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Part (2)*

Differential Analysis of Boundary Layer
(Lift and Drag of Flow Over Immersed Bodies)

In this part we consider various aspects of the viscous effects in the boundary layer region and the
relationship between the boundary layer and the flow over bodies that are immersed in a real (i.e., viscous)
fluid. Examples of such immersed bodies include the flow over air around airplanes, automobiles, and falling
snow flakes, or the flow of water around submarines and fish. In these situations the object is completely
surrounded by the fluid and the flows are termed external flows. External flows involving air are often termed
aerodynamics in response to the important external flows produced when an object such as an airplane flies
through the atmosphere. Although this field of external flows is extremely important, there are many other
examples that are of equal importance. We should note that the boundary layer region and the large viscous
effects exists also in many internal flows. Examples include the entrance length of the flow in pipes or ducts
and the near wall flow in a diffuser where in both cases the viscous effects in boundary layer flow is
dominant.

We study the boundary layer flow to calculate all the forces generated because of the viscous
effects at the wall. The fluid force (lift and drag) on surface vehicles (cars, trucks, bicycles) has become a
very important topic. By correctly designing cars and trucks, it has become possible to greatly decrease the
fuel consumption and improve the handling characteristics of the vehicle. Similar efforts have resulted in
improved ships, whether they are surface vessels (i.e., surrounded by two fluids, air and water) or submersible
vessels (i.e., surrounded only by water). Other applications of external flows involve objects that are not
completely surrounded by fluid, although they are placed in some external-type flow. For example, the proper
design of a building (whether it is your house or a tall skyscraper) must include consideration of the various
wind effects involved.

As with the other areas of fluid mechanics, two approaches (i.e., theoretical and experimental) are
used to obtain information on fluid forces developed by external flows. Theoretical (i.e., analytical and
numerical) techniques can provide much of the needed information about such flows. However, because of
the complexities of both the governing equations and geometry of the objects involved, the amount of
information obtained from purely theoretical methods is limited. With current and anticipated advancements
in the area of computational fluid mechanics, it is likely that computer prediction of forces and complicated
flow patterns will become readily available.

Much of the information about external flows comes from experiments carried out, for the most
part, on scale models of the actual objects. Such testing includes the obvious wind tunnel testing of model
airplanes, buildings, and even entire cities. In some instances the actual device, not a model, is tested in the
wind tunnels. Figure 4.1 shows tests of vehicles in wind tunnels. Better performance of cars, bikes, skiers, and
numerous other objects has resulted from testing in wind tunnels. The use of water tunnels and towing tanks
also provides useful information about the flow around ships and other objects.

In this part, we first consider the general characteristics of external flow past immersed objects
before we make detailed differential analysis of the flow in the boundary layer region. We investigate the
qualitative aspects of such external flows and learn how to determine the various forces on objects surrounded
by a moving fluid.

* Ref.:(1) Bruce R. Munson, Donald F. Young, Theodore H. Okiishi “Fundamental
of Fluid Mechanics” 4™ ed., John Wiley & Sons, Inc., 2002.
(2) Frank M. White “Fluid Mechanics”, 4™ ed. McGraw Hill, 2002.
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4.1 General External Flow Characteristics

A body immersed in a moving fluid experiences a resultant force due to the interaction be-
tween the body and the fluid surrounding it. In some instances [such as an airplane flying
through still air) the fluid far from the body is stationary and the body mowves through the
fluid with velocity &7 In other instances (such as the wind blowing past a building) the body
is staticnary and the fluid flows past the body with velocity U7, In any case, we can fix the
coordinate system in the body and treat the situation as fluid flowing past a stationary body

B FIGURE 4.1
(@) Flow past a full-
sized streamlined ve-
hicle in the GM aero-
dynamics laboratory
wind tunnel, an 18-ft
by 34-ft test section
facility driven by a
4000-hp, 43-ft-diame- @
ter fan. (Photograph
courtesy of General
Motors Corporation.)
(b) Surface flow on a
model vehicle as indi-
cated by tufts at-
tached to the surface.
(Reprinted with per-
mission from Society
of Automotive Engi-
neers, Ref. 28.) @)

with velocity U, the upstream velocity. For the purposes of this book, we will assume that
the upstream velocity is constant in both time and location. That is, there is a uniform. con-
stant velocity fluid flowing past the object. In actual situations this is often not true. For ex-
ample, the wind blowing past a smokestack is nearly always turbulent and gusty (unsteady)
and probably not of uniform velocity from the top to the bottom of the stack. Usually the
unsteadiness and nonuniformity are of minor importance.

Even with a steady, uniform upstream flow, the flow in the vicinity of an object may
be unsteady. Examples of this type of behavior include the flutter that is sometimes found
in the flow past airfoils (wings), the regular oscillation of telephone wires that “sing™ in a
wind, and the irregular turbulent fluctuations in the wake regions behind bodies.

The structure of an external flow and the ease with which the flow can be described
and analyzed often depend on the nature of the body in the flow. Three general categories
of bodies are shown in Fig.4.2 . They include (a) two-dimensional objects (infinitely long and
of constant cross-sectional size and shape), (b) axisymmetric bodies (formed by rotating their
cross-sectional shape about the axis of symmetry), and (¢) three-dimensional bodies that may
or may not possess a line or plane of symmetry. In practice there can be no truly two-di-
mensional bodies—nothing extends to infinity. However, many objects are sufficiently long
so that the end effects are negligibly small.

SR > ===

v
7
<

(a) (b) ()

B FIGURE 4.2 Flow classification: (a) two-dimensional,
(b) axisymmetric, (¢) three-dimensional.
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Another classification of body shape can be made depending on whether the body is
streamlined or blunt. The flow characteristics depend strongly on the amount of streamlin-
ing present. In general, streamlined bodies (i.e., airfoils, racing cars, etc.) have little effect on
the surrounding fluid, compared with the effect that blunt bodies (i.e., parachutes, buildings,
etc.) have on the fluid. Usually, but not always, it is easier to force a streamlined body through
a fluid than it is to force a similar-sized blunt body at the same velocity. There are impor-
tant exceptions to this basic rule.

4.1.1 Lift and Drag Concepts

When any body moves through a fluid, an interaction between the body and the fluid occurs;
this effect can be described in terms of the forces at the fluid—body interface. This can be
described in terms of the stresses—wall shear stresses, 7,.. due to viscous effects and nor-
mal stresses due to the pressure, p. Typical shear stress and pressure distributions are shown
in Figs.4.3 a and4.3 b. Both 7,, and p vary in magnitude and direction along the surface.

It is often useful to know the detailed distribution of shear stress and pressure over
the surface of the body, although such information is difficult to obtain. Many times, how-
ever, only the integrated or resultant effects of these distributions are needed. The resultant
force in the direction of the upstream velocity is termed the drag, 9, and the resultant force
normal to the upstream velocity is termed the lift, &, as is indicated in Fig.4.3 c¢. For some

p=<0
U .
A A 4 4
Pressure
distribution p=>0
(a)
Ty Shear stress
- _— —_ /distribution
U —>
“'-\...“ ‘h‘
N— — -
[}
() B FIGURE 4.3 Forces
58“ from the surrounding fluid on a
two-dimensional object: (a) pres-
. sure force, (b) viscous force,
L_,_ I (c) resultant force (lift and drag).

(c)

three-dimensional bodies there may also be a side force that is perpendicular to the plane
containing % and 9.

The resultant of the shear stress and pressure distributions can be obtained by inte-
grating the effect of these two quantities on the body surface as is indicated in Fig. 4.4 . The
x and y components of the fluid force on the small area element dA are

dF, = (pdA) cos 8 + (7,,dA) sin 6
dF, = —(p dA)sin# + (7, dA) cos 6

and

Thus, the net x and v components of the force on the object are

9 = | dF, = l p cos B dA + l T, sin @ dA (4.1)
and J J J

g = [ dF, = — l psin 6 dA + l 7, COs H dA (4.2)
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Of course, to carry out the integrations and determine the lift and drag, we must know the
body shape (i.e., # as a function of location along the body) and the distribution of 7, and p
along the surface. These distributions are often extremely difficult to obtain, either experi-
mentally or theoretically. The pressure distribution can be obtained experimentally without
too much difficulty by use of a series of static pressure taps along the body surface. On the
other hand, it is usually quite difficult to measure the wall shear stress distribution.

It is seen that both the shear stress and pressure force contribute to the lift and drag,
since for an arbitrary body # is neither zero nor 90° along the entire body. The exception is

a flat plate aligned either parallel to the upstream flow (# = 90°) or normal to the upstream
flow (# = 0) as is discussed in Example 4.1.

Example 4.1:

Air at standard conditions flows past a flat plate as is indicated in Fig. E4.1. In case (a) the
plate is parallel to the upstream flow, and in case (b) it is perpendicular to the upstream flow.
If the pressure and shear stress distributions on the surface are as indicated (obtained either
by experiment or theory), determine the lift and drag on the plate.

b =width = 10 ft

p=pk)=0
v
U= 25 fts | —**ﬁ*—h —
o [ Fd N 1
p =0 (gage) ‘ ek ok e _“1“ *
, 4 ft ,

B FIGURE E4.1
T, = T,(x) = (1.24 x 1073)/x Ib/Ht2
where x is in feet
(@)
Solution

For either orientation of the plate, the lift and drag are obtained from Eqgs.4.1 and4.2 . With
the plate parallel to the upstream tlow we have # = 90° on the top surtace and # = 270" on
the bottom surface so that the lift and drag are given by

iﬁ‘f’:—l pdA+l pdA =0
Jrop

and Jbottom

W

O = l 7, dA + [
top

J bottom

T,d4 = 2 l 7., dA (1)
Jtop

where we have used the fact that because of symmetry the shear stress distribution is the

same on the top and the bottom surfaces, as is the pressure also [whether we use gage (p = 0)

or absolute (p = p,,,) pressure]. There is no lift generated—the plate does not know up from

¥
V2 N ‘ p =-0.893 Ib/ft?
p=0.744 (1 77] Ib/ft

where v is in feet /
\Y o) =

A
T, —Td—V)
U= 25 fiis H—» ! i e
— ( 7 | ~ Low p
p=0 Y ¥ | L
——
AN A

(&) ()
B FIGURE E4.1 (Continued)
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down. With the given shear stress distribution. Eq. 1 gives

Pt (1,24 > 1077

Ofy —
=2 [ X172

1b/ﬂ;2> (10 ft) dx
Jx=0

or
99 = 0.0992 1b (Ans)

(o]

With the plate perpendicular to the upstream flow. we have 6 = 0° on the front and

# = 180° on the back. Thus, from Eqs.4.1 and 4.2
P o=

Tw @A — T, dA = 0

J front _lhack

and

9 = pdA — pdA

J front J back

Again there is no lift because the pressure forces act parallel to the upstream flow (in the di-
rection of 9 not &) and the shear stress is symmetrical about the center of the plate. With
the given relatively large pressure on the front of the plate (the center of the plate is a stag-
nation point) and the negative pressure (less than the upstream pressure) on the back of the
plate., we obtain the following drag

~2 0 2
: v
9 = l {0,744 (1 — ':)113/1%2 — (—0.893) lb/ftz} (10 ft) dy
or % = 55.6 Ib (Ans)
Clearly there are two mechanisms responsible for the drag. On the ultimately stream-
lined body (a zero thickness flat plate parallel to the flow) the drag is entirely due to the shear
stress at the surface and. in this example, is relatively small. For the ultimately blunted body

(a flat plate normal to the upstream flow) the drag is entirely due to the pressure difference
between the front and back portions of the object and, in this example, is relatively large.

It the flat plate were oriented at an arbitrary angle relative to the upstream flow as in-
dicated in Fig. E 4.1c, there would be both a lift and a drag, each of which would be depen-
dent on both the shear stress and the pressure. Both the pressure and shear stress distribu-
tions would be different for the top and bottom surfaces.

.

Although Egs.4.1 and 4.2 are valid for any body. the difficulty in their use lies in ob-
taining the appropriate shear stress and pressure distributions on the body surface. Consid-
erable effort has gone into determining these quantities, but because of the various com-

plexities involved, such information is available only for certain simple situations.

Without detailed information concerning the shear stress and pressure distributions on
a body, Eqs.4.1 and 4.2 cannot be used. The widely used alternative is to define dimen-
sionless lift and drag coefficients and determine their approximate values by means of either
a simplified analysis, some numerical technique, or an appropriate experiment. The [/ift co-

efficient, Cy, and drag coefficient, Cp, are defined as @
CL = 1 _2
and 2P Ur A
Cp=
P LR

where A is a characteristic area of the object Typically, A is taken to be the projected oOr firontal
area—the projected area seen by a person looking toward the object from a direction par-
allel to the upstream velocity, U. It would be the area of the shadow of the object projected
onto a screen normal to the upstream velocity as formed by a light shining along the up-
stream flow. In other situations A is taken to be the planform area—the projected area seen
by an observer looking toward the object from a direction normal to the upstream velocity
(i.e., from ‘“‘above” it). Obviously, which characteristic area is used in the definition of the
lift and drag coefficients must be clearly stated.
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4.1.2 Characteristics of Flow Past an Object

External flows past objects encompass an extremely wide variety of fluid mechanics phe-
nomena. Clearly the character of the flow field is a function of the shape of the body. Flows
past relatively simple geometric shapes (i.e., a sphere or circular cylinder) are expected to
have less complex flow fields than flows past a complex shape such as an airplane or a tree.
However, even the simplest-shaped objects produce rather complex flows.

For a given-shaped object, the characteristics of the flow depend very strongly on
various parameters such as size, orientation, speed, and fluid properties. As is discussed in
second year , according to dimensional analysis arguments, the character of the flow should
depend on the various dimensionless parameters involved. For typical external flows the most
important of these parameters are the Reynolds number, Re = pU{/u = Ul /v, the Mach
number, Ma = U/c, and for flows with a free surface (i‘e‘, flows with an interface between
two fluids, such as the flow past a surface ship), the Froude number, Fr = U/ “\/"?. (Recall
that € is some characteristic length of the object and c is the speed of sound.)

For the present, we consider how the external flow and its associated lift and drag vary
as a function of Reynolds number. Recall that the Reynolds number represents the ratio of
inertial effects to viscous effects. In the absence of all viscous effects (. = 0), the Reynolds
number is infinite. On the other hand, in the absence of all inertial effects (negligible mass
or p = 0), the Reynolds number is zero. Clearly, any actual flow will have a Reynolds num-
ber between (but not including) these two extremes. The nature of the flow past a body de-
pends strongly on whether Re > 1 or Re < 1.

Most external flows with which we are familiar are associated with moderately sized
objects with a characteristic length on the order of 0.01 m < { << 10 m. In addition, typi-
cal upstream velocities are on the order of 0.01 m/s << U < 100 m/s and the fluids involved
are typically water or air. The resulting Reynolds number range for such flows is approxi-
mately 10 < Re < 10°. As a rule of thumb, flows with Re > 100 are dominated by iner-
tial effects, whereas flows with Re << 1 are dominated by viscous effects. Hence, most fa-
miliar external flows are dominated by inertia.

On the other hand, there are many external flows in which the Reynolds number is
considerably less than 1, indicating in some sense that viscous forces are more important
than inertial forces. The gradual settling of small particles of dirt in a lake or stream is gov-
erned by low Reynolds number flow principles because of the small diameter of the parti-
cles and their small settling speed. Similarly, the Reynolds number for objects moving through
large viscosity oils is small because u is large. The general differences between small and
large Reynolds number flow past streamlined and blunt objects can be illustrated by con-
sidering flows past two objects—one a flat plate parallel to the upstream velocity and the
other a circular cylinder.

Flows past three flat plates of length € with Re = pUf€/u = 0.1, 10, and 107 are shown
in Fig.4.5 . If the Reynolds number is small, the viscous effects are relatively strong and the
plate affects the uniform upstream flow far ahead, above, below, and behind the plate. To
reach that portion of the flow field where the velocity has been altered by less than 1% of
its undisturbed value (i.e.. U — u << 0.01 U) we must travel relatively far from the plate. In
low Reynolds number flows the viscous effects are felt far from the object in all directions.

As the Reynolds number is increased (by increasing U, for example), the region in
which viscous effects are important becomes smaller in all directions except downstream, as
is shown in Fig. 4.5 h. One does not need to travel very far ahead, above, or below the plate
to reach areas in which the viscous effects of the plate are not felt. The streamlines are dis-
placed from their original uniform upstream conditions, but the displacement is not as great
as for the Re = 0.1 situation shown in Fig. 4 5a.

Dr. Mohsen Soliman -8 -



If the Reynolds number is large (but not infinite), the flow is dominated by inertial ef-
fects and the viscous effects are negligible everywhere except in a region very close to the
plate and in the relatively thin wake region behind the plate, as shown in Fig.4.5 ¢. Since the
fluid viscosity is not zero (Re <C o), it follows that the fluid must stick to the solid surface
(the no-slip boundary condition). There is a thin boundary layer region of thickness
& = 8(x) < (€ (i.e.. thin relative to the length of the plate) next to the plate in which the fluid
velocity changes from the upstream value of u = U to zero velocity on the plate. The thick-
ness of this layer increases in the direction of flow, starting from zero at the forward or lead-
ing edge of the plate. The flow within the boundary layer may be laminar or turbulent, de-
pending on various parameters involved.

The streamlines of the flow outside of the boundary layer are nearly parallel to the
plate. As we will see in the next section, the slight displacement of the external streamlines
that are outside of the boundary layer is due to the thickening of the boundary layer in the
direction of flow. The existence of the plate has very little effect on the streamlines outside
of the boundary layer—either ahead, above, or below the plate. On the other hand, the wake
region is due entirely to the viscous interaction between the fluid and the plate.

One of the great advancements in fluid mechanics occurred in 1904 as a result of the
insight of Ludwig Prandtl (1875-1953), a German physicist and aerodynamicist. He con-

Viscous affacts
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ceived of the idea of the boundary layer—a thin region on the surface of a body in which
viscous effects are very important and outside of which the fluid behaves essentially as if it
were inviscid. Clearly the actual fluid viscosity is the same throughout: only the relative im-
portance of the viscous effects (due to the velocity gradients) is different within or outside
of the boundary layer. As is discussed in the next section. by using such a hypothesis it is
possible to simplify the analysis of large Reynolds number flows, thereby allowing solution
to external flow problems that are otherwise still unsolvable.

As with the flow past the flat plate described above, the flow past a blunt object (such
as a circular cylinder) also varies with Reynolds number. In general, the larger the Reynolds
number, the smaller the region of the flow field in which viscous effects are important. For
objects that are not sufficiently streamlined, however, an additional characteristic of the flow
is observed. This is termed flow separation and is illustrated in Fig. 4.6.

Low Reynolds number flow (Re = UD/r << 1) past a circular cylinder is character-
ized by the fact that the presence of the cylinder and the accompanying viscous effects are
felt throughout a relatively large portion of the flow field. As is indicated in Fig. 4.6a, for
Re = UD/v = 0.1, the viscous effects are important several diameters in any direction from
the cylinder. A somewhat surprising characteristic of this flow is that the streamlines are es-
sentially symmetric about the center of the cylinder—the streamline pattern is the same in
front of the cylinder as it is behind the cylinder.

As the Reynolds number is increased, the region ahead of the cylinder in which vis-
cous effects are important becomes smaller, with the viscous region extending only a short
distance ahead of the cylinder. The viscous effects are convected downstream and the flow
loses its symmetry. Another characteristic of external flows becomes important—the flow
separates from the body at the separation location as indicated in Fig.4.6 b. With the increase
in Reynolds number, the fluid inertia becomes more important and at some location on the
body, denoted the separation location, the fluid’s inertia is such that it cannot follow the
curved path around to the rear of the body. The result is a separation bubble behind the cylin-
der in which some of the fluid is actually flowing upstream, against the direction of the up-
stream flow.

At still larger Reynolds numbers, the area affected by the viscous forces is forced far-
ther downstream until it involves only a thin (6 < D) boundary layer on the front portion of

Viscous
- effects
important

Separa/tﬁn
location
X

/\ Viscosity not -
/\ important i

U
— - X — !
Viscous forces + Separation bubble
important throughout (a) Re =50
Re = UD/v = 0.1 )
B FIGURE 456
Vi_scositty ntot Boundary layer separation Characteir of the
importan Viscous effects steady, viscous flow
¢ important past a circular cylin-
— Wak der: (a) low Reynolds
/—\.é: C *’regioen number flow,
U ] D . N (b) moderate Rey-
Re = 10° Separated region nolds number flow,
(c) large Reynolds
(©) number flow.
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the cylinder and an irregular, unsteady (perhaps turbulent) wake region that extends far down-
stream of the cylinder. The fluid in the region outside of the boundary layer and wake region
flows as if it were inviscid. Of course, the fluid viscosity is the same throughout the entire
flow field. Whether viscous effects are important or not depends on which region of the flow
field we consider. The velocity gradients within the boundary layer and wake regions are
much larger than those in the remainder of the flow field. Since the shear stress (i,e‘, viscous
effect) is the product of the fluid viscosity and the velocity gradient, it follows that viscous
effects are confined to the boundary layer and wake regions.

The characteristics described in Figs.4.5 and 4.6 for flow past a flat plate and a circular
cylinder are typical of flows past streamlined and blunt bodies, respectively. The nature of the
flow depends strongly on the Reynolds number. (See Ref. 31 for many examples illustrating
this behavior.) Most familiar flows are similar to the large Reynolds number flows depicted in
Figs.4.5 ¢ and 4.6 ¢, rather than the low Reynolds number flow situations. In the remainder of
this chapter we will investigate more thoroughly these ideas and determine how to calculate
the forces on immersed bodies.

Example 4.2:

It is desired to determine the various characteristics of flow past a car. The following tests
could be carried out: (a) U = 20 mm/s flow of glycerin past a scale model that is 34-mm
tall, 100-mm long and 40-mm wide, (b) U = 20 mm/s air flow past the scale model, or
(c) U = 25 m/s air flow past the actual car, which is 1.7-m tall, 5-m long, and 2-m wide.
Would the flow characteristics for these three situations be similar? Explain.

Solution
The characteristics of flow past an object depend on the Reynolds number. For this instance
we could pick the characteristic length to be the height, i, width, b, or length, €, of the car
to obtain three possible Reynolds numbers, Re, = Uh/v, Re, = Ub/v, and Re, = U(/v.
These numbers will be different because of the different values of h, b, and €. Once we ar-
bitrarily decide on the length we wish to use as the characteristic length, we must stick with
it for all calculations when using comparisons between model and prototype.
With the values of kinematic viscosity for air and glycerin obtained

as v, = 1.46 X 107> m?/s and Vglyeerin = 1.19 X 10~* m?/s, we obtain the follow-

ing Reynolds numbers for the flows described.

Reynolds (a) Model in (b) Model in

Number Glycerin Air (¢) Car in Air
Re, 0.571 46.6 2.91 x 10°
Re, 0.672 54.8 3.42 x 10°
Re, 1.68 137.0 8.56 x 10°

Clearly, the Reynolds numbers for the three flows are quite different (regardless of
which characteristic length we choose). Based on the previous discussion concerning flow
past a flat plate or flow past a circular cylinder, we would expect that the flow past the ac-
tual car would behave in some way similar to the flows shown in Figs. 4.5¢ or4.6 c. That is,
we would expect some type of boundary layer characteristic in which viscous effects would
be confined to relatively thin layers near the surface of the car and the wake region behind
it. Whether the car would act more like a flat plate or a cylinder would depend on the amount
of streamlining incorporated into the car’s design.
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Because of the small Reynolds number involved, the flow past the model car in glyc-
erin would be dominated by viscous effects, in some way reminiscent of the flows depicted
in Figs. 4. 5a or4.6 a. Similarly, with the moderate Reynolds number involved for the air flow
past the model, a flow with characteristics similar to those indicated in Figs. 4.56 and 4.6 b
would be expected. Viscous eflects would be important—not as important as with the glyc-
erin flow, but more important than with the full-sized car.

It would not be a wise decision to expect the flow past the full-sized car to be similar
to the flow past either of the models. The same conclusions result regardless of whether we
use Re,. Re,. or Re,. As is indicated in second vyear, the flows past the model car and the full-
sized prototype will not be similar unless the Reynolds numbers for the model and proto-
type are the same. It is not always an easy task to ensure this condition. One (expensive) so-
lution is to test full-sized prototypes in very large wind tunnels (see Fig.4.1).

-

4.2 Boundary Layer Characteristics

As was discussed in the previous section, it is often possible to treat flow past an object as
a combination of viscous flow in the boundary layer and inviscid flow elsewhere. If the
Reynolds number is large enough, viscous effects are important only in the boundary layer
regions near the object (and in the wake region behind the object). The boundary layer is
needed to allow for the no-slip boundary condition that requires the fluid to cling to any solid
surface that it flows past. Outside of the boundary layer the velocity gradients normal to the
flow are relatively small, and the fluid acts as if it were inviscid, even though the viscosity
is not zero. A necessary condition for this structure of the flow is that the Reynolds number
be large.

4.2.1 Boundary Layer Structure and Thickness on a Flat Plate

There can be a wide variety in the size of a boundary layer and the structure of the flow
within it. Part of this variation is due to the shape of the object on which the boundary layer
forms. In this section we consider the simplest situation, one in which the boundary layer is
formed on an infinitely long flat plate along which flows a viscous, incompressible fluid as
is shown in Fig.4.7 . If the surface were curved (i.e., a circular cylinder or an airfoil), the
boundary layer structure would be more complex. Such flows are discussed in Section4.2.6 .

If the Reynolds number is sufficiently large, only the fluid in a relatively thin bound-
ary layer on the plate will feel the effect of the plate. That is, except in the region next to
the plate the flow velocity will be essentially V = Ui. the upstream velocity. For the infi-
nitely long flat plate extending from x = 0 to x = %, it is not obvious how to define the

U i U U
+1 -ttty £ -
Fluid > - >
particle
> > f?.‘:\\'g/
T | > ;,
+3 Bt ——=o =2 Sl re e =
| i * M FIGURE 4.7
/l-i Laminar boundary ! Turbulent boundary Distortion of a fluid
Leading layer layer p:frtl.cle as it flows
edge within the boundary
x=0 layer.

Reynolds number because there is no characteristic length. The plate has no thickness and
is not of finite length!

For a finite length plate, it is clear that the plate length. €, can be used as the charac-
teristic length. For an infinitely long plate we use x, the coordinate distance along the plate
from the leading edge, as the characteristic length and define the Reynolds number as

Dr. Mohsen Soliman -12 -



Re, = Ux/v. Thus, for any fluid or upstream velocity the Reynolds number will be suffi-
ciently large for boundary layer type flow (i.e., Fig. 4.5¢) if the plate is long enough. Phys-
ically, this means that the flow situations illustrated in Fig.4.5 could be thought of as occurring
on the same plate, but should be viewed by looking at longer portions of the plate as we step
away from the plate to see the flows in Fig. 4.5a, 4.5b, and 4.5¢, respectively.

If the plate is sufficiently long, the Reynolds number Re = U€ /v is sufficiently large
so that the flow takes on its boundary layer character (except very near the leading edge).
The details of the flow field near the leading edge are lost to our eyes because we are stand-
ing so far from the plate that we cannot make out these details. On this scale (Fig. 9.5¢) the
plate has negligible effect on the fluid ahead of the plate. The presence of the plate is felt
only in the relatively thin boundary layer and wake regions. As previously noted, Prandtl in
1904 was the first to hypothesize such a concept. It has become one of the major turning
points in fluid mechanics analysis.

A better appreciation of the structure of the boundary layer flow can be obtained by
considering what happens to a fluid particle that flows into the boundary layer. As is indi-
cated in Fig.4.7 , a small rectangular particle retains its original shape as it flows in the uni-
form flow outside of the boundary layer. Once it enters the boundary layer, the particle be-
gins to distort because of the velocity gradient within the boundary layer—the top of the
particle has a larger speed than its bottom. The fluid particles do not rotate as they flow along
outside the boundary layer. but they begin to rotate once they pass through the fictitious
boundary layer surface and enter the world of viscous flow. The flow is said to be irrota-
tional outside the boundary layer and rotational within the boundary layer. (In terms of the
kinematics of fluid particles as is discussed in partl secl.1, the flow outside the boundary
layer has zero vorticity, and the flow within the boundary layer has nonzero vorticity.)

At some distance downstream from the leading edge, the boundary layer flow becomes
turbulent and the fluid particles become greatly distorted because of the random, irregular
nature of the turbulence. One of the distinguishing features of turbulent flow is the occur-
rence of irregular mixing of fluid parcels that range in size from the smallest fluid particles
up to those comparable in size with the object of interest. For laminar flow, mixing occurs
only on the molecular scale. This molecular scale is orders of magnitude smaller in size than
typical size scales for turbulent flow mixing. The transition from laminar to turbulent flow
occurs at a critical value of the Reynolds number, Re ., on the order of 2 X 10° to 3 X 10°,
depending on the roughness of the surface and the amount of turbulence in the upstream
flow, as is discussed in Section4.2.4 .

The purpose of the boundary layer on the plate is to allow the fluid to change its ve-
locity from the upstream value of U to zero on the plate. Thus, V= 0aty = 0and V = Ui
at y = 8, with the velocity profile, # = u(x, y) bridging the boundary layer thickness. In
actuality (both mathematically and physically). there is no sharp “edge” to the boundary
layer. That is, # — U as we get farther from the plate; it is not precisely u = U at y = 6. We
define the boundary layer thickness, o, as that distance from the plate at which the fluid velocity
is within some arbitrary value of the upstream velocity. Typically, as indicated in Fig. 4.8a,

0=y where u=099U

To remove this arbitrariness (i.c., what is so special about 99%:; why not 98%?), the
following definitions are introduced. Shown in Fig.4.8 b are two velocity profiles for flow
past a flat plate—one if there were no viscosity (a uniform profile) and the other if there are

viscosity and zero slip at the wall (the boundary layer profile). Because of the velocity deficit,
U — u, within the boundary layer, the flowrate across section b—b is less than that across
section a—a. However, if we displace the plate at section a—a by an appropriate amount &%,
the boundary layer displacement thickness, the flowrates across each section will be identi-
cal. This is true if
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The displacement thickness represents the amount that the thickness of the body must
be increased so that the fictitious uniform inviscid flow has the same mass flowrate proper-
ties as the actual viscous flow. It represents the outward displacement of the streamlines
caused by the viscous effects on the plate. This idea allows us to simulate the presence that
the boundary layer has on the flow outside of the boundary layer by adding the displacement
thickness to the actual wall and treating the flow over the thickened body as an inviscid flow.
The displacement thickness concept is illustrated in Example 4.3 .

Example 4.3:

Air flowing into a 2-ft-square duct with a uniform velocity of 10 ft/s forms a boundary layer
on the walls as shown in Fig. E4.3. The fluid within the core region (outside the boundary
layers) flows as if it were inviscid. From advanced calculations it is determined that for this
flow the boundary layer displacement thickness is given by

8% = 0.0070(x)'” (1)

where 6* and x are in feet. Determine the velocity U = U(x) of the air within the duct but
outside of the boundary layer.

J. =
Uy = Viscous effects important
10 ft's
-——-—T__‘___ F
Inviscid core
2-ft square = = Ulx)
6-\* .
L I LA e

(1) ! (2) B FIGURE E43

| |

[ x |

Solution

If we assume incompressible flow (a reasonable assumption because of the low velocities in-
volved), it follows that the volume flowrate across any section of the duct is equal to that at
the entrance (i.e.. O, = Q,). That is, ) o » r
UA; = 10 ft/s (2 ft)* = 40 ft’/s = | udA
J2)
According to the definition of the displacement thickness, 6%, the flowrate across section (2)
is the same as that for a uniform flow with velocity U through a duct whose walls have been
moved inward by &%. That is, -
40 f*/s = | wudA = U(2 ft — 25%)? 2)

J2)
By combining Eqgs. 1 and 2 we obtain {

40 /s = 4U(1 — 0.0070x'?)?
or 10

U= ft/s (Ans)
(1 — 0.0070x722 /5 e
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Note that U increases in the downstream direction. For example, U = 11.6 ft/s at
x = 100 ft. The viscous effects that cause the fluid to stick to the walls of the duct reduce
the effective size of the duct, thereby (from conservation of mass principles) causing the fluid
to accelerate. The pressure drop necessary to do this can be obtained by using the Bernoulli
equation ( part 3 ) along the inviscid streamlines from section (1) to (2). (Recall that this equa-
tion is not valid for viscous flows within the boundary layer. It is, however, valid for the in-
viscid flow outside the boundary layer.) Thus,

pi1 +3pUi = p + 3pU?
Hence, with p = 2.38 X 1077 slugs/ft> and p, = 0 we obtain
1
p=5pUi - U

I 10?
= ;(2.38 X 1077 slugs/ft?) {(10 ft/s)* —

(1 — 0.0079x'%)*

ft2/ 32}

or 1

— _ re 2
p=0.119 [1 = 0‘0070":1&)4} Ib/ft

For example, p = —0.0401 Ib/ft> at x = 100 ft.

If it were desired to maintain a constant velocity along the centerline of this entrance
region of the duct, the walls could be displaced outward by an amount equal to the bound-
ary layer displacement thickness, &%.

.

Another boundary layer thickness definition, the boundary laver momentum thickness,
0. is often used when determining the drag on an object. Again because of the velocity
deficit, U — u, in the boundary layer, the momentum flux across section b—b in Fig. 4.8 is
less than that across section a—a. This deficit in momentum flux for the actual boundary
layer flow is given by : ro
pu(U — u) dA = pb
! Jo

u(U — u)dy

which by definition is the momentum flux in a layer of uniform speed U and thickness O.

That is, -

pbU*O = pb | u(U — u)dy

JO

ﬂmi(l —£>d~ (4.4)
L, o\" " u)? |

All three boundary layer thickness definitions, &, 6*, and O, are of use in boundary layer
analyses.

The boundary layer concept is based on the fact that the boundary layer is thin. For
the flat plate flow this means that at any location x along the plate, 6 <€ x. Similarly, 6* < x
and © < x. Again, this is true if we do not get too close to the leading edge of the plate (i.e.,
not closer than Re, = Ux/r = 1000 or so).

The structure and properties of the boundary layer flow depend on whether the flow
is laminar or turbulent. As is illustrated in Fig. 4.9 and discussed in Sections 4.2.2 through
4.2.5, both the boundary layer thickness and the wall shear stress are different in these two
regimes.

or

O =

4.2.2  Prandtl/Blasius Boundary Layer Solution

In theory, the details of viscous, incompressible flow past any object can be obtained by solv-
ing the governing Navier-Stokes equations discussed in Parts 1 and 2 . For steady, two-
dimensional laminar flows with negligible gravitational effects, these equations
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reduce to the following: . . ; a .,
dut dut 1 ap acu au
U—+v—= ——= +I”-’)+,0 (4.5)
ox dy P dx adx” dy”
av av 1 ap v oPe
u_——i—'v_—:——’——i—y j+-2 (46)
ox av P dy dx ady
which express Newton’s second law. In addition, the conservation of mass equation,
for incompressible flow is du av
—+—=0 (4.7)
dx dJdv

The appropriate boundary conditions are that the fluid velocity far from the body is the up-
stream velocity and that the fluid sticks to the solid body surfaces. Although the mathemat-
ical problem is well-posed. no one has obtained an analytical solution to these equations for
flow past any shaped body! Currently much work is being done to obtain numerical solu-
tions to these governing equations for many flow geometries.

By using boundary layer concepts introduced in the previous sections, Prandtl was able
to impose certain approximations (valid for large Reynolds number flows), and thereby to
simplify the governing equations. In 1908, H. Blasius (1883 —-1970), one of Prandtl’s stu-
dents, was able to solve these simplified equations for the boundary layer flow past a flat
plate parallel to the flow. A brief outline of this technique and the results are presented be-
low. Additional details may be found in the literature (Refs. 1, 2, 3).

Since the boundary layer is thin, it is expected that the component of velocity normal
to the plate is much smaller than that parallel to the plate and that the rate of change of any
parameter across the boundary layer should be much greater than that along the flow direc-
tion. That is, a d

v<€<u and — < —
ox ay
Physically, the flow is primarily parallel to the plate and any fluid property is convected
downstream much more quickly than it is diffused across the streamlines.
With these assumptions it can be shown that the governing equations (Eqgs. 4.5.4.6 ,
and 4.7) reduce to the following boundary layer equations:

di av

— 4+ — =0 (4.8)
ox dy
au au d°u
U—+v—=v-_— (4.9)
dx dy ay

Although both these boundary layer equations and the original Navier—Stokes equations are
nonlinear partial differential equations, there are considerable differences between them. For
one, the vy momentum equation has been eliminated. leaving only the original. unaltered con-
tinuity equation and a modified x momentum equation. One of the variables, the pressure,
has been eliminated, leaving only the x and y components of velocity as unknowns. For
boundary layer flow over a flat plate the pressure is constant throughout the fluid. The flow
represents a balance between viscous and inertial effects, with pressure playing no role.

Note:For a curved wall, x can represent the arc length along the wall and y can be everywhere normal to x
with negligible change in the boundary-layer equations as long as the radius of curvature of the wall is
large compared with the boundary-layer thickness
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More detailed analysis of the 2-D Boundary Layer equations:

In 1904 Prandtl correctly deduced that a shear layer must be very thin if the Reynolds
number is large, so that the following approximations apply:
Velocities: v<u
Rates of change: ﬂ < ﬂ v £ d_v
dx dy ox dy
Our discussion of displacement thickness in the previous section was intended to jus-
tify these assumptions.

Applying these approximations to Eq. ( 4.6 ) results in a powerful simplification
@~
dy

In other words, the y-momentum equation can be neglected entirely, and the pressure
varies only along the boundary layer, not through it. The pressure-gradient term in Eq.
( 4.5 ) is assumed to be known in advance from Bernoulli’s equation applied to the
outer inviscid flow

or p = p(x) only

ap _dp _ AU

dx  dx dx
Presumably we have already made the inviscid analysis and know the distribution of
U(x) along the wall from frectionless flow analysis given in part (3).
Meanwhile, one term in Eq. ( 4.5 ) is negligible due to

a%u a%u
<73
ax>  dy
However, neither term in the continuity relation ( 4.7 ) can be neglected
warning that continuity is always a vital part of any fluid-flow analysis.
The net result is that the three full equations of motion are reduced to Prandtl’s
two boundary-layer equations

another

'I"lrlllr 'I:;'T_"

Continuity: — + —=0
i X ay
ou Ju - dU 1 o7
Momentum along wall: u—+v—=U—+ ——
X ay ax P ay
du . ,
1 laminar flow
f;"ll.
where T =
ol — .
M T puy turbulent flow
v

These are to be solved for u(x, y) and v(x, v). with U(x) assumed to be a known func-
tion from the outer inviscid-flow analysis. There are boundary conditions on « and on v:

At y = 0 (wall): u=v=0 (no slip) i
Aty = 8(x) (outer stream): u = U(x) (patching) also ”f = 0 at the outer edge
At y =0 (wall) : the shear stress 1s maximum " CR— '

Unlike the Navier-Stokes equations , which are mathematically elliptic and must

be solved simultaneously over the entire flow field, the boundary-layer equations

are mathematically parabolic and are solved by beginning at the leading edge and
marching downstream as far as you like, stopping at the separation point or earlier if
you prefer.
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The boundary conditions for the governing boundary layer equations are that the fluid
sticks to the plate

u=v=0 on y=0 (4.10)

and that outside of the boundary layer the flow is the uniform upstream flow 4 = U. That is,

u—U as y—w (4.11)
Mathematically, the upstream velocity is approached asymptotically as one moves away from
the plate. Physically, the flow velocity is within 1% of the upstream velocity at a distance of
o tfrom the plate.

In mathematical terms, the Navier—Stokes equations (Eqs.4.5 ,4.6 ) and the continuity
equation (Eq.4.7 ) are elliptic equations, whereas the equations for boundary layer flow
(Egs.4.8 and 4.9) are parabolic equations. The nature of the solutions to these two sets of
equations, therefore, is different. Physically, this fact translates to the idea that what happens
downstream of a given location in a boundary layer cannot affect what happens upstream of
that point. That is, whether the plate shown in Fig. 4.5¢ ends with length € or is extended to
length 2¢, the flow within the first segment of length ¢ will be the same. In addition, the
presence of the plate has no effect on the flow ahead of the plate.

In general, the solutions of nonlinear partial differential equations (such as the bound-
ary layer equations, Eqs. 4.8 and 4.9) are extremely difficult to obtain. However, by apply-
ing a clever coordinate transformation and change of variables, Blasius reduced the partial
differential equations to an ordinary differential equation that he was able to solve. A brief
description of this process is given below. Additional details can be found in standard books
dealing with boundary layer flow (Refs. 1, 2).

It can be argued that in dimensionless form the boundary layer velocity profiles on a
flat plate should be similar regardless of the location along the plate. That is,

o=+(3)
v 5\s

where g(v/d) is an unknown function to be determined. In addition, by applying an order of
magnitude analysis of the forces acting on fluid within the boundary layer, it can be shown
that the boundary layer thickness grows as the square root of x and inversely proportional to
the square root of U. That is, o \172
8 a _)
G

Such a conclusion results from a balance between viscous and inertial forces within the
boundary layer and from the fact that the velocity varies much more rapidly in the direction
across the boundary layer than along it.
Thus, we introduce the dimensionless similarity variable n = (U/vx)"?y and the stream
function 4 = (v x U)"” f(n). where f = f(n) is an unknown function. Recall from part (3)
that the velocity components for two-dimensional flow are given in terms of the stream

function as « = diy/dy and v = — dib/dx, which for this flow become
= Uf' .
and . ’ (T?) (4.12)
p U\ 2 )
v—(%> (nf" = f) (4.13)

with the notation ( )’ = d/drn. We substitute Eqs.4.12 and 4.13 into the governing equa-
tions, Eqs.4.8 and 4.9, to obtain (after considerable manipulation) the following nonlinear,

Dr. Mohsen Soliman -18 -



third-order ordinary differential equation:
A"+ ff" =0 (4.14a)
The boundary conditions given in Egs. 9,10 and 9,11 can be written as
f=f"=0atnp=0 and ['—=lasn-—= (4.14b)

The original partial differential equation and boundary conditions have been reduced to an
ordinary differential equation by use of the similarity variable n. The two independent vari-
ables, x and vy, were combined into the similarity variable in a fashion that reduced the par-
tial differential equation ('.u‘lt.i boundary L'ﬁll'll_litiﬁll'lh) to an ordinary differential equation. This
type of reduction is not generally possible. For example, this method does not work on the
full Navier-Stokes equations, although it does on the boundary layer equations (Eqs. 4.8
and 4.9 ).

Although there is no known analytical solution to Eq.4.14 , it is relatively easy to
integrate this equation on a computer. The dimensionless boundary layer profile, u/U = ['(n).
obtained by numerical solution of Eq. 4.14 (tL‘l‘I'I'IL‘LI the Blasius mll.ltiun), 15 sketched in
Fig. 4.10a and is tabulated in Table 4,1, The velocity profiles at different x locations are sim-
tlar in that there is only one curve necessary to describe the velocity at any point in the bound-
ary layer, Because the similarity variable 1 contains both x and v, it is seen from Fig, 4,10 6
that the actual velocity profiles are a function of both x and v. The profile at location x| is
the same as that at v, except that the v coordinate is stretched by a factor of (x,/x,)",

From the solution it is foundthat /U = 0,99 when n = 5.0. Thus,

[vx
or 6 =3 VT (4.15)
o 5
¥ VRe,
where Re, = Ux/p. It can also be shown that the displacement and momentum thicknesses
are given by 55 1.72]
and . \/R_"* e
0O ().664
oo = (4.17)

)

As postulated, the boundary layer is thin provided that Re, is large (i.e., §/x = 0 as Re, —» =),

With the velocity profile known, it is an easy matter to determine the wall shear stress,
Tw = p(0u/dy), =0, where the velocity gradient is evaluated at the plate. The value of du/dy
at v = 0 can be obtained from the Blasius solution to give

oan o
7, = 0.3320% oy

(4.18)

Note that the shear stress decreases with increasing x because of the increasing thickness of
the boundary layer—the velocity gradient at the wall decreases with increasing x. Also, 7,
varies as U not as U as it does for fully developed laminar pipe flow. These variations are
discussed in Section4.2.3
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sionless form using the similarity variable 7, (&) similar boundary layer profiles at different
locations along the flat plate.

Table .1 Blasius Velocity Protile for laminar flow on a flat plate

yLU /()" /U R LA/ 02 w /U
0.0 0.0 2.8 0.81152
0.2 0.06641 3.0 0.84605
0.4 0.13277 3.2 0.87600
0.6 0.19894 3.4 0.90177
0.8 0.26471 3.6 0.92333
1.0 0.32979 3.8 094112
1.2 0.30378 4.0 0.95552
1.4 045627 4.2 0.96696
1.6 0.51676 4.4 0.97587
1.8 0.57477 4.6 0.98269
2.0 0.62077 4.8 0.98779
2.2 0.68132 5.0 0.99155
2.4 0.728909 oo 1.00000
2.6 0.77246

Since & is so ill defined, the momentum thickness, being definite, is often used to cor-
relate data taken for a variety of boundary layers under differing conditions. The ratio
of displacement to momentum thickness, called the dimensionless-profile shape fac-
tor, is also useful in integral theories. For laminar flat-plate flow

6>I<
=212l _ 55
0 0.664
A large shape factor then implies that boundary-layer separation is about to occur.

Example (A) :

A sharp flat plate with L = 1 m and b = 3 m is immersed parallel to a stream of velocity 2 m/s.
Find the drag on one side of the plate, and at the trailing edge find the thicknesses 8, 6%, and 6
for (a) air, p = 1.23 kg/m® and » = 1.46 X 107> m?s, and (b) water, p = 1000 kg/m> and » =
1.02 X 107° m%s.

Solution
Part (a)
The airflow Reynolds number is
VL (2.0 m/s)(1.0 m)
= = 137.000
v 146 X 1077 m%/s
Since this is less than 3 X 10°, we assume that the boundary layer is laminar.
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the drag coefficient is _ 1.328
2 (137,000) 7
Thus the drag on one side in the airflow is
D = CpipU”hL = 0.00359(3)(1.23)(2.0)%(3.0)(1.0) = 0.0265 N Ans. (a)

The boundary-layer thickness at the end of the plate is

= 0.00359

5 5.0 5.0
—= 93 = — = = 0.0135
L~ Ref” ~ (3700072 ~ 001
or 6 = 0.0135(1.0) = 0.0135 m = 13.5 mm Ans. (a)
We find the other two thicknesses simply by ratios:
oF = % 6 = 4.65 mm 6= ;5.9 = 1.79 mm Ans. (a)
Notice that no conversion factors are needed with SI units.
Yart (b) 5 0010
The water Reynolds number is ~ Re; = T2>(< ‘1 (;_6 = 1.96 x 10°

This is rather close to the critical value of 3 X 10° so that a rough surface or noisy free stream
might trigger transition to turbulence: but let us assume that the flow is laminar. The water drag

coefficient is 1.328
Cp= = (.000949
D (1.96 x 109172
and D= 0.000949(%)(1000)(2.0)2(3.0)(1.0) =570 N Ans. (b)

The drag is 215 times more for water in spite of the higher Reynolds number and lower drag
coefficient because water is 57 times more viscous and 813 times denser than air. From Eq.
. in laminar flow, it should have (57)"%(813)"? = 7.53(28.5) = 215 times more drag.
The boundary-layer thickness is given by

_E; ~ (1.96 f<‘010*‘-’*)""2 = 000357
or 6 = 0.00357(1000 mm) = 3.57 mm Ans. (b)
By scaling down we have
&% = L.721 &= 123 mm f = " _ 0.48 mm Ans. (b)
5.0 2.59 )

The water layer is 3.8 times thinner than the air layer, which reflects the square root of the 14.3
ratio of air to water kinematic viscosity.

4.2.3 Momentum-Integral Boundary Layer Equation for a Flat Plate

One of the important aspects of boundary layer theory is the determination of the drag
caused by shear forces on a body. As was discussed in the previous section, such results
can be obtained from the governing differential equations for laminar boundary layver flow.
Since these solutions are extremely difficult to obtain, it is of interest to have an alternative
approximate method. The momentum integral method described in this section provides
such an alternative.

We consider the uniform flow past a flat plate and the fixed control volume as shown
in Fig. 4.11. In agreement with advanced theory and experiment. we assume that the pres-
sure is constant throughout the flow field. The flow entering the control volume at the lead-
ing edge of the plate [section (1)] is uniform, while the velocity of the flow exiting the con-
trol volume [section (2)] varies from the upstream velocity at the edge of the boundary layer
to zero velocity on the plate.

The fluid adjacent to the plate makes up the lower portion of the control surtace. The
upper surface coincides with the streamline just outside the edge of the boundary layer at
section (2). It need not (in fact, does not) coincide with the edge of the boundary layer ex-
cept at section (2). If we apply the x component of the momentum equation to the steady flow
of fluid within this control volume we obtain

SMF.,=p| uV-tdA+ p | uV-hdA
J J@
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where for a plate of width b )
2 F.= —% — [ T, dA = —b
J plate J

and % is the drag that the plate exerts on the fluid. Note that the net force caused by the uni-
form pressure distribution does not contribute to this flow. Since the plate is solid and the
upper surface of the control volume is a streamline, there is no flow through these areas.

T dXx “.19)

plate

Thus,

—% = p [ U(—U)dA + p [ u® dA
. Jay J@)
or 5
9 = pU?*bh — pb [ u® dy (4.20)
JO
v U ——— Control
surface
: —

U Stre‘iawllmi.‘__\_t_ —— | ! FIGURE 4.11
— —I—— e o | Control volume used
_,hl ) ’_’_ﬂ{-:" Sx) I y in the derivation of
—_— ,Ji/" Boundary layer edge J | the momentum inte-

||: — < e — I gral equation for
X
boundary layer flow.
(1) 7,,(x) (2) ¥ 1}

Although the height /i is not known, it is known that for conservation of mass the

flowrate through section (1) must equal that through section (2), or
s

Uh

u dy

which can be written as Jo

-8
pU’bh = pb Uu dy (4.21)

Jo
Thus, by combining Eqs.4.20 and4.21 we obtain the drag in terms of the deficit of mo-
mentum flux across the outlet of the control volume as

~ 5

u(U — u) dy (4.22)

9 = pb
Jo
If the flow were inviscid, the drag would be zero, since we would have u = U and the

right-hand side of Eq. 4.22 would be zero. (This is consistent with the fact that 7, = O if
= 0.) Equation 4.22 points out the important fact that boundary layer flow on a flat plate
is governed by a balance between shear drag (the left-hand side of Eq.4.22 ) and a decrease
in the momentum of the fluid (the right-hand side of Eq.4.22 ). As x increases, & increases
and the drag increases. The thickening of the boundary layer is necessary to overcome the
drag of the viscous shear stress on the plate. This is contrary to horizontal fully developed
pipe flow in which the momentum of the fluid remains constant and the shear force is over-
come by the pressure gradient along the pipe.

The development of Eq.4.22 and its use was first put forth in 1921 by T.
Karman (1881-1963), a Hungarian/German aerodynamicist. By comparing Eqs. 4.22 and
4.9 we see that the drag can be written in terms of the momentum thickness, O, as

Yo1n

9 = pbU? ©
Note that this equation is valid for laminar or turbulent flows.
The shear stress distribution can be obtained from Eq.4.23 by differentiating both sides
with respect to x to obtain don

dx

(4.23)

(4.24)

The increase in drag per length of the plate. d%/dx. occurs at the expense of an increase of
the momentum boundary layer thickness, which represents a decrease in the momentum of
the fluid.
Since d 9 = 7, b dx (see Eq.4.19) it follows that
dor

br, (4.25)
dx
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Hence. by combining Eqs.4.24 and 4.253 we obtain the momentum integral equation for the
boundary layer flow on a flat plate JO
2

dx

The usefulness of this relationship lies in the ability to obtain approximate boundary
layer results easily by using rather crude assumptions. For example, if we knew the detailed
velocity profile in the boundary layer (i.e., the Blasius solution discussed in the previous sec-
tion), we could evaluate either the right-hand side of Eq.4.23 to obtain the drag. or the right-
hand side of Eq.4.26 to obtain the shear stress. Fortunately, even a rather crude guess at the
velocity profile will allow us to obtain reasonable drag and shear stress results from Eq.4.26 .
This method is illustrated in Example 4.4 .

Example 4.4:

Consider the laminar flow of an incompressible fluid past a flat plate at vy = 0. The bound-
ary layer velocity profile is approximated as 4 = Uy/dforO0 =y =3dandu = U for v > &,
as is shown in Fig. E4.4. Determine the shear stress by using the momentum integral equa-
tion. Compare these results with the Blasius results given by Eq.4.18 .

7., = pU (4.26)

}.‘
="

3 .

|

|

|

|

|

|

\H = Uwé I

0 U 1 B FIGURE E44

Solution

From Eq.4.26 the shear stress is given by

) doe ot
fw p dx .
while for laminar flow we know that 7, = wu(du/dy),_,. For the assumed profile we have
U
and from Eq.4.4 Tw = ME (2)
o o o8
u u u u v v
S T G PO LY R PR T
Jo U U o U U Jo \ & o
. (o)
or = = 3
O p 3)

Note that as yet we do not know the value of & (but suspect that it should be a function of x).
By combining Eqgs. 1, 2. and 3 we obtain the following differential equation for &:

pt pU? ds

o 5 6 dx
6
5ds =~ ax
plU
This can be integrated from the leading edge of the plate, x = O (where 8 = 0) to an arbi-
trary location x where the boundary layer thickness is 3. The result is
& _ Oop
or 2 — PU'Y
6 =346./— 4
NV U @)
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Note that this approximate result (i.e., the velocity profile is not actually the simple straight
line we assumed) compares favorably with the (much more laborious to obtain) Blasius re-
sult given by Eq.4.15 .

The wall shear stress can also be obtained by combining Eqs. 1. 3, and 4 to give

JR—
[

P

. = 0.2890°72 [ (Ans)
N x
Again this approximate result is close (within 13%) to the Blasius value of 7, given by
Eq.4.18 .
.

As is illustrated in Example4 .4 . the momentum integral equation, Eq.4.26 | can be
used along with an assumed velocity profile to obtain reasonable, approximate boundary layer
results. The accuracy of these results depends on how closely the shape of the assumed ve-
locity profile approximates the actual profile.

Thus, we consider a general velocity profile % = g(Y) for 0=V=1

and "1 for Y>> 1
U

where the dimensionless coordinate ¥ = y/& varies from 0 to 1 across the boundary layer.
The dimensionless function g(Y) can be any shape we choose, although it should be a rea-
sonable approximation to the boundary layer profile. In particular, it should certainly satisfy
the boundary conditions # = O at y = 0 and u = U at y = 6. That is,

2(0) =0 and g(1)=1

The linear function g(Y) = Y used in Example 4.4 is one such possible profile. Other con-
ditions, such as dg/dY = 0 at ¥ = 1 (i.e., du/dy = 0 aty = ), could also be incorporated
into the function g(Y) to more closely approximate the actual profile.

For a given g(Y), the drag can be determined from Eq. 4.22 as

&

-1
G = pb | w(U = u)dy = pr?a[ a(V)[1 — o(¥)] ay
JO J0

9 = pbU?*8C, (4.27)

where the dimensionless constant C| has the value
-1

Ci= | el1 — anyay

Also. the wall shear stress can be written as

or

517 Ud U
F o= — HZ A8 = (4.28)
d}" y=0 8 G’Y ¥=0 8
where the dimensionless constant C, has the value C. — @
2 dy ¥=0
By combining Eqs. 4.25,4.27 , and4.28 we obtain wC,
6dé = —dx
pUC,
which can be integrated from & = 0 at x = 0 to give ]
8 . I." 21/ sz
or "N ucg
o V2C,/C
X VRe,
By substituting this expression back into Eqs.4.28 we obtain
,"IC C’) .'I
= 222 g (PR (4.30)

TN 2 Vox

To use Egs.4.29 and 4.30 we must determine the values of C; and C5. Several assumed

velocity profiles and the resulting values of & are given in Fig.4.12 and Table 4.2. The more

closely the assumed shape approximates the acutal (i.e., Blasius) profile, the more accurate

the final results. For any assumed profile shape. the functional dependence of & and T,, on

the physical parameters p, . U, and x is the same. Only the constants are different. That is,
8 ~ (ux/pU)'7? or 8Rel?/x = constant, and 7,, ~ (ppU?/x)'/?, where Re, = pUx/p.
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Linear

Cubic

Sine wave

Blasius

m FIGURE 4.12 Typical
approximate boundary layer profiles
used in the momentum integral
equation.

s
3

It is often convenient to use the dimensionless local friction coefficient, ¢, defined as
=T (4.31)
2pU
to express the wall shear stress. From Eq.4.30 we obtain the approximate value
— [w  \V2C,G,
Cf = V’ZCICZ. I.'I = —
] \ pUx VRe,
while the Blasius solution result is given by 0.664

Cy — p—
RV Re,
These results are also indicated in Table 4.2 .

(4.32)

E TABLE 4.2

Flat Plate Momentum-Integral Results for Various Assumed Laminar Flow Velocity Profiles
______________________________________________________________________________________________________________________________________________|

Profile Character 6Rel?/x che}/ 2 CDfRe}f 2

a. Blasius solution 5.00 0.664 1.328
b. Linear

u/U = v/d 3.46 0.578 1.156
¢. Parabolic

u/U = 2y/6 — ()'/3)2 5.48 0.730 1.460
d. Cubic

u/U = 3(y/8)/2 — (_\'/3)3/2 4.64 0.646 1.292
e. Sine wave

u/U = sin[7(y/8)/2] 4.79 0.655 1.310

For a flat plate of length € and width b, the net friction drag. 24, can be expressed in
terms of the friction drag coefficient, Cpy, as r

o, b Iy T dX
. Cpr = 71 2,0 1 2 p
o1 spU-bt spU-bt
1 (¢
CDf = - Cf(j.f (433)
{ Jo
‘We use the above approximate value of ¢ = (2C1Cg,u/pUx)1f2 to obtain
C — V8C,C,
o V'Re,

where Re, = U€/v is the Reynolds number based on the plate length. The corresponding
value obtained from the Blasius solution (Eq.4.32 ) gives 1 328

Dr =

These results are also indicated in Table4.2 . VRe,
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The momentum-integral boundary layer method provides a relatively simple technique
to obtain useful boundary layer results. As is discussed in Sections4.2.5 and 4.2.6, this tech-
nique can be extended to boundary layer flows on curved surfaces (where the pressure and
fluid velocity at the edge of the boundary layer are not constant) and to turbulent flows.

4.2.4 Transition from Laminar to Turbulent Flow

The analytical results given in Table4.2 are restricted to laminar boundary layer flows along
a flat plate with zero pressure gradient. They agree quite well with experimental results up
to the point where the boundary layer flow becomes turbulent, which will occur for any free
stream velocity and any fluid provided the plate is long enough. This is true because the pa-
rameter that governs the transition to turbulent flow is the Reynolds number—in this case
the Reynolds number based on the distance from the leading edge of the plate, Re, = Ux/v.

The value of the Reynolds number at the transition location is a rather complex func-
tion of various parameters involved, including the roughness of the surface, the curvature of
the surface (e.g., a flat plate or a sphere), and some measure of the disturbances in the flow
outside the boundary layer. On a flat plate with a sharp leading edge in a typical air stream,
the transition takes place at a distance x from the leading edge given by Re,, = 2 X 10’ to
3 X 10° Unless otherwise stated, we will use Re,., = 5 X 10’ in our calculations.

The actual transition from laminar to turbulent boundary layer flow may occur over a
region of the plate, not at a specific single location. This occurs, in part, because of the spot-
tiness of the transition. Typically. the transition begins at random locations on the plate in
the vicinity of Re, = Re, . These spots grow rapidly as they are convected downstream un-
til the entire width of the plate is covered with turbulent flow. The photo shown in Fig.4.13
illustrates this transition process.

The complex process of transition from laminar to turbulent flow involves the insta-
bility of the flow field. Small disturbances imposed on the boundary layer flow (i.e., from a
vibration of the plate, a roughness of the surface, or a “wiggle” in the flow past the plate)
will either grow (instability) or decay (stability), depending on where the disturbance is in-
troduced into the flow. If these disturbances occur at a location with Re, << Re, . they will

. W
T — Q‘ e
— J’_‘f —
= ——— .._ -

B FIGURE 4.13
Turbulent spots and the tran-
sition from laminar to turbu-
lent boundary layer flow on a
flat plate. Flow from left to
right. (Photograph courtesy
e of B. Cantwell, Stanford

e s S . University.)
die out, and the boundary layer will return to laminar flow at that location. Disturbances im-
posed at a location with Re, > Re,_ will grow and transform the boundary layer flow down-
stream of this location into turbulence. The study of the initiation, growth, and structure of
these turbulent bursts or spots is an active area of fluid mechanics research.

Transition from laminar to turbulent flow also involves a noticeable change in the shape
of the boundary layer velocity profile. Typical profiles obtained in the neighborhood of the
transition location are indicated in Fig.4.14 . The turbulent profiles are flatter, have a larger
velocity gradient at the wall, and produce a larger boundary layer thickness than do the lam-

inar profiles.
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B FIGURE 414  Typical
boundary layer profiles on a flat plate
for laminar, transitional, and turbulent
flow (Ref. 1).

o

Example 4.5: xi

A fluid flows steadily past a flat plate with a velocity of U = 10 ft/s. At approximately what
location will the boundary layer become turbulent, and how thick is the boundary layer at
that point if the fluid is (a) water at 60 °F, (b) standard air, or (c) glycerin at 68 °F?

Solution o
: : . [vx

For any fluid, the laminar boundary layer thickness is found from Eq.4.15 as 6§ =5 \E

vRe,., '
The boundary layer remains laminar up to Xy =
Thus, if : Re,, =5 X 10° we obtai 5% 10°
hus, if we assume Re,, we obtain v = 1 sx 10ty
and 10 ft/s

v 1/2
O = 8] yoy, =5 E(5 X 10'w)| =354v
where v is in ft*/s and x_, and 8, are in feet. The values of the kinematic viscosity obtained
from Tables are listed in Table E4.5 along with the corresponding x_, and J,,.

B TABLE E45
I EEEEEEE——

Fluid v(ft?/s) X, (ft) b,,(ft)
a. Water 1.21 x 107° 0.605 0.00428
b. Air 1.57 x 107 7.85 0.0556
c¢. Glycerin 1.28 X 1072 640.0 4.53 Ans

Laminar flow can be maintained on a longer portion of the plate if the viscosity is in-
creased. However, the boundary layer flow eventually becomes turbulent, provided the plate
is long enough. Similarly, the boundary layer thickness is greater if the viscosity is increased.
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4.2.5 .2 Turbulent Boundary Layer Flow

The structure of turbulent boundary layer flow is very complex, random, and irregular. It
shares many of the characteristics described for turbulent pipe flow in part (2) . In par-
ticular, the velocity at any given location in the flow is unsteady in a random fashion. The
flow can be thought of as a jumbled mix of interwined eddies (or swirls) of different sizes
(diameters and angular velocities). The various fluid quantities involved (i.e., mass, momen-
tum, energy) are convected downstream in the free-stream direction as in a laminar bound-
ary layer. For turbulent flow they are also convected across the boundary layer (in the di-
rection perpendicular to the plate) by the random transport of finite-sized fluid particles
associated with the turbulent eddies. There is considerable mixing involved with these finite-
sized eddies—considerably more than is associated with the mixing found in laminar flow
where it is confined to the molecular scale. Although there is considerable random motion
of fluid particles perpendicular to the plate, there is very little net transfer of mass across the
boundary layer—the largest flowrate by far is parallel to the plate.

There is, however, a considerable net transfer of x component of momentum perpen-
dicular to the plate because of the random motion of the particles. Fluid particles moving
toward the plate (in the negative y direction) have some of their excess momentum (they come
from areas of higher velocity) removed by the plate. Conversely, particles moving away from
the plate (in the positive y direction) gain momentum from the fluid (they come from areas of
lower velocity). The net result is that the plate acts as a momentum sink, continually extracting
momentum from the fluid. For laminar flows, such cross-stream transfer of these properties
takes place solely on the molecular scale. For turbulent flow the randomness is associated with
fluid particle mixing. Consequently, the shear force for turbulent boundary layer flow is con-
siderably greater than it is for laminar boundary layer flow .

There are no “exact” solutions for turbulent boundary layer flow. As is discussed in
Section 4.2.2, it is possible to solve the Prandtl boundary layer equations for laminar flow
past a flat plate to obtain the Blasius solution (which is “exact” within the framework of the
assumptions involved in the boundary layer equations). Since there is no precise expression
for the shear stress in turbulent flow (see part (2) ). solutions are not available for turbu-
lent flow. However, considerable headway has been made in obtaining numerical (computer)
solutions for turbulent flow by using approximate shear stress relationships. Also, progress
is being made in the area of direct, full numerical integration of the basic governing equa-
tions, the Navier-Stokes equations.

Approximate turbulent boundary layer results can also be obtained by use of the mo-
mentum integral equation, Eq.4.26 , which is valid for either laminar or turbulent flow. What
is needed for the use of this equation are reasonable approximations to the velocity profile
u= Ug(Y), where Y = y/8 and u is the time-averaged velocity (the overbar notation, u, of
part (2) has been dropped for convenience) and a functional relationship describing the
wall shear stress. For laminar flow the wall shear stress was used as 7,, = w(du/dy),—. In
theory, such a technique should work for turbulent boundary layers also. However, as is dis-
cussed in part (2) . the details of the velocity gradient at the wall are not well understood
for turbulent flow. Thus, it is necessary to use some empirical relationship for the wall shear
stress. This is illustrated in Example 4 ¢ .

Consider turbulent flow of an incompressible fluid past a flat plate. The boundary layer ve-
locity profile is assumed to be u/U = (v/8)"" = Y for Y = y/8 = landu = Ufor Y > 1|
as shown in Fig. E4.6. This is a reasonable approximation of experimentally observed pro-
files, except very near the plate where this formula gives du/dy = o at y = 0. Note the dif-
ferences between the assumed turbulent profile and the laminar profile.
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Also assume that the shear stress agrees with the experimentally determined formula:

o \174
TW::(10225pE12(EE§) (1)

T, As a

Determine the boundary layer thicknesses &, 6%, and © and the wall shear stress,
function of x. Determine the friction drag coefficient, Cpy.

Solution

Whether the flow is laminar or turbulent, it is true that the drag force is accounted for by a
reduction in the momentum of the fluid flowing past the plate. The shear is obtained from

1.0
0.8
0.6 1
5= |r..g 7 (_L‘;\_) 7 o f!
i L I
= 04 Turbulent 4!"'
Laiminar — f"‘f
0.2 ~
i FIGURE E4.6
-~
0 =
o 0.5 1.0
il
7
Eq. 4.26 in terms of the rate at which the momentum boundary layer thickness, €, increases
: y the plate ac L, d0)
with distance along the plate as T, = 2 f
dx

For the assumed velocity profile, the boundary layer momentum thickness is obtained

from Eq.4.9 as s .1
n=[ 1(|—1>n=ﬁlﬁ(|—i}w
Jo U vz - Jo U t

or by integration |

7
- 1/7 . 1/7 — =
) hl Y/l YN dY T‘-'h (2)
J) r
where & is an unknown function of x. By combining the assumed shear force dependence
(Eq. 1) with Eq. 2. we obtain the following differential equation for &:
1/4 x
T 7 , o
().0225;:{}'-( ) = ——pl-~
or Us 72 dx

b\
3% dd = 0.231 (—) dx

U
This can be integrated from & = 0 at x = 0 to obtain

AN 475

3= 0370 ) XY 3

or in dimensionless form i — ﬂ { Anis)
X R;:if'
Strictly speaking, the boundary layer near the leading edge of the plate is laminar, not tur-
bulent, and the precise boundary condition should be the matching of the initial turbulent
boundary layer thickness (at the transition location) with the thickness of the laminar bound-
ary layer at that point. In practice, however, the laminar boundary layer often exists over a
relatively short portion of the plate, and the error associated with starting the turbulent bound-

ary layer with 6 = 0 at x = 0 can be negligible.
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The displacement thickness, 8%, and the momentum thickness, ©, can be obtained from
Eqgs. 4.3 and 4.4 by integrating as follows:

o ~1
5% = (1—i)a{v=8[ (1—i ay
Jo U Jo u

1

o
- a[ (1 — y/yay =2
Jo 8
Thus, by combining this with Eq. 3 we obtain
L \1/5
5% = 0.0463 (15) X5 (Ans)
Similarly, from Eq. 2, »\1/5
O = L8 = 0.0360 (E) X3 (4) (Ans)

The functional dependence for 8. 6%, and © is the same; only the constants of proportional-
ity are different. Typically, © <I &% < 4.
By combining Eqs. 1 and 3. we obtain the following result for the wall shear stress

r :|1f4 B 0.0288pU*?
U(0.370)(w/U)\ x| RelS
This can be integrated over the length of the plate to obtain the friction drag on one side of

the plate, %0, as - f NNV
%, = [ br, dx = b(0.0288pU?) (—) dx
or Jo Jo \Ux

e = 0.0225pU? { (Ans)

%y = 0.0360pU* Rel”
where A = b{ is the area of the plate. (This result can also be obtained by combining Eq. 4.23
and the expression for the momentum thickness given in Eq. 4.) The corresponding friction
drag coefficient, Cpy. is P i _0.0720
P 1puPA T Rel

Note that for the turbulent boundary layer flow the boundary layer thickness increases
with x as 8 — x*° and the shear stress decreases as 7,, — x~ /°. For laminar flow these de-
pendencies are x'/? and x~'/?, respectively. The random character of the turbulent flow causes
a different structure of the flow.

Obviously the results presented in this example are valid only in the range of validity
of the original data—the assumed velocity profile and shear stress. This range covers smooth
kﬂat plates with 5 X 10° << Re, < 107,

(Ans)

In general, the drag coefficient for a flat plate of length € is a function of the Reynolds
number, Re,, and the relative roughness, £/€. The results of numerous experiments covering
a wide range of the parameters of interest are shown in Fig.4.15 . For laminar boundary layer
flow the drag coefficient is a function of only the Reynolds number—surface roughness is
not important. This is similar to laminar flow in a pipe. However, for turbulent flow, the
surface roughness does affect the shear stress and, hence, the drag coefficient. This is simi-
lar to turbulent pipe flow in which the surface roughness may protrude into or through the
viscous sublayer next to the wall and alter the flow in this thin, but very important, layer
Values of the roughness, &, for different materials can be obtained from part (2).

The drag coefficient diagram of Fig.4.15 (boundary layer flow) shares many charac-
teristics in common with the familiar Moody diagram (pipe flow) of part (2) . even though
the mechanisms governing the flow are quite different. Fully developed horizontal pipe flow
is governed by a balance between pressure forces and viscous forces. The fluid inertia re-
mains constant throughout the flow. Boundary layer flow on a horizontal flat plate is gov-
erned by a balance between inertia effects and viscous forces. The pressure remains constant
throughout the flow. (As is discussed in Section 4.2.6, for boundary layer flow on curved
surfaces, the pressure is not constant.)
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B TABLE 4.3

Empirical Equations for the Flat Plate Drag Coefficient (Ref. 1)

Equation

Flow Conditions

Cpr = 1.328/(Re)™

Cpr = 0.455/(log Re;)*™* — 1700/Re;
Cpe = 0.455/(log Re,)**

Cpr = [1.89 — 1.62 log(e/()]™*

Laminar flow

Transitional with Re,., = 5 X 10°
Turbulent, smooth plate
Completely turbulent

It is often convenient to have an equation for the drag coefficient as a function of the
Reynolds number and relative roughness rather than the graphical representation given in

Fig. 4.15. Although there is not one equation valid for the entire Re,

— g/{ range, the equa-

tions presented in Table 4.3 do work well for the conditions indicated.

Example 4.7:

Solution

The water ski shown in Fig. E4.7a moves through 70 °F water with a velocity U. Estimate
the drag caused by the shear stress on the bottom of the ski for 0 << U < 30 ft/s.

(a)

m FIGURE E47

5

Clearly the ski is not a flat plate, and it is not aligned exactly parallel to the upstream flow.
However, we can obtain a reasonable approximation to the shear force by using the flat plate
results. That is, the friction drag, EL'_f.f, caused by the shear stress on the bottom of the ski (the

wall shear stress) can be determined as % pUCh Cor

Entire boundary
layer laminar

[

15
U, ft/s
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With A = €b = 4 ft X 0.5 ft = 2ft*, p = 1.94 slugs/ft’, and . = 2.04 X 1077 Ib - s/ft
btai _ 5
WEOPHI G = 11,94 slugs /f0)(2.0 O UPChy = 1.94 UPC)y (1)

where %, and U are in pounds and ft/s, respectively.

The friction coefficient, Cp,. can be obtained from Fig. 4.15 or from the appropriate
equations given in Table4.3 . As we will see, for this problem, much of the flow lies within
the transition regime where both the laminar and turbulent portions of the boundary layer
flow occupy comparable lengths of the plate. We choose to use the values of Cp, from the
table. For the given conditions we obtain

) ) e 3N (
Re, = pUC _ (1.94 slugsirst )(4 ft)zf 380 X 105U
M 2.04 X 1077 1b - s/ft
where U is in ft/s. With U = 10 ft/s, or Re, = 3.80 X 10° we obtain from Table 4.3
Cpy = 0.455/(log Re,)*>* — 1700/Re, = 0.00308. From Eq. 1 the corresponding drag is

9y = 1.94(10)*(0.00308) = 0.598 1b
By covering the range of upstream velocities of interest we obtain the results shown in
Fig. E4.7b.

If Re = 1000, the results of boundary layer theory are not valid—inertia effects are
not dominant enough and the boundary layer is not thin compared with the length of the
plate. For our problem this corresponds to U = 2.63 X 10~° ft/s. For all practical purposes
U is greater than this value, and the flow past the ski is of the boundary layer type.

The approximate location of the transition from laminar to turbulent boundary layer
flow as defined by Re_, = pUx_ /i = 5 X 10’ is indicated in Fig. E4.7b. Up to U = 1.31 ft/s
the entire boundary layer is laminar. The fraction of the boundary layer that is laminar de-
creases as U increases until only the front 0.18 ft is laminar when U = 30 ft/s.

For anyone who has water skied, it is clear that it can require considerably more force
to be pulled along at 30 ft/s than the 2 X 4.88 1b = 9.76 b (two skis) indicated in Fig. E4.7b.
As is discussed in Section4.3 |, the total drag on an object such as a water ski consists of
more than just the friction drag. Other components, including pressure drag and wave-making
drag, add considerably to the total resistance.

.

Example 4.8 :
A long, thin flat plate is placed parallel to a 20-ft/s stream of water at 20°C. At what distance x
from the leading edge will the boundary-layer thickness be 1 in? Use any of these equations:

ForLaminar flow: & — 9 (1); For Turbulent flow: L = _0.16 (2)
X (Ux/p)'? x (Uxin)”

Solution

Since we do not know the Reynolds number, we must guess which of Eqs. (1) or (2) apply here.

for water, = 1.09 X 1077 ft*/s; hence U _ 20 ft/s

— / 6 p—1
vy 1.09 x 107 ft*/s 184> 107 fi

With 8 = 1 in =  ft, try Eq.(1):
s2Upy G 07184 X 10° ™1
5 25

Now we can test the Reynolds number to see whether the formula applied:

Ux (20 ft/s)(511 ft) <
= = =04 % 10
v 1.09 x 1077 ft*/s

This is impossible since the maximum Re, for laminar flow past a flat plate is 3 X 10°. So we

or X

=511 ft

Re,
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try again with Eq. (2)

SCL/v 157 |76 (%ft}(184 e 106 ft—I)If_.-" Tie
- x = [(07;; —| = . — (4.0976 = 5.17 ft Ans.

(20 fi/s)(5.17 f0)
Test Re, —
e €T .00 < 107 fid/s

This is a perfectly proper turbulent-flow condition; hence we have found the correct position x
on our second try.

= 9.5 > 10°

Example 4.9 :

Are low-speed. small-scale air and water boundary layers really thin? Consider flow at U = 1

ft/s past a flat plate 1 ft long. Compute the boundary-layer thickness at the trailing edge for (a)
air and (b) water at 20°C.,

Solution

Part (a)
From Table, vy, = 1.61 E-4 ft*/s. The trailing-edge Reynolds number thus is
UL (1 ft/s)(1 ft)
Re;, = = = 6200
LT T el B4 s
Since this is less than 10°, the flow is presumed laminar, and since it is greater than 2500, the
boundary layer is reasonably thin. From exact solution . the predicted laminar thickness is

° =~ 0 _ 0.0634
X V6200 o
or, at x = 1 ft, 8 = 0.0634 ft = 0.76 in

Ans. (a)
*art (b)

From Table Vwater = 1.08 E-5 ft*/s. The trailing-edge Reynolds number is
(1 ft/s)(1 ft)
108 E-5 fids - 02000

This again satisfies the laminar and thinness conditions. The boundary-layer thickness is

REL ==

o 5.0 )
22— _ —00164
X V02,600
or, at x = 1 ft, & = 00164 ft = 0.20 in

Ans. (b)
Thus. even at such low wvelocities and short lengths, both airtflows and water flows satisty the
boundary-layer approximations.

4.2.5.b Further Analysis of Turbulent Boundary Layer Flow :

There is no exact theory for turbulent flat-plate flow, although there are many elegant
computer solutions of the boundary-layer equations using various empirical models for
the turbulent eddy viscosity [9]. The most widely accepted result is simply an integal
analysis similar to our study of the laminar-profile approximation Sec. (4.2.3)-

We begin with Eq. (4.29, which is valid for laminar or turbulent flow. We write it
here for convenient reference:

ro) = pt? 42 “.26)
dx
From the definition of ¢y this can be rewritten as
de .
i 4.34
(f dx ( )

Now recall from Fig.4.14 that the turbulent profiles are nowhere near parabolic. From
Fig.2.13 (part 2) . we see that flat-plate flow is very nearly logarithmic, with a slight
outer wake and a thin viscous sublayer. Therefore, just as in turbulent pipe flow, we
assume that the logarithmic law (2.87) holds all the way across the boundary layer

u 1 v 7, \ 112
—=—1In-~= + B wr = —=
u* K v P

(4.35)
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with, as usual, k = 0.41 and B = 5.0. At the outer edge of the boundary layer, v =8
and u = U, and Eq. (4.35) becomes

U 1 Sur*
— = —1In + B (4.36)
u* K v
But the definition of the skin-friction coefficient, is such that the following
identities hold: U 2\ 12 Su*® f Cr\12
=) = Res( | (4.37)
u* . Cr ) v 2
Therefore Eq. (4.36) is a skin-friction law for turbulent flat-plate flow
f o\ 172 f cp\ 12
(—) ~ 2.44 In Rea(—) + 5.0 (4.38)
\ Cf 2
It is a complicated law. but we can at least solve for a few values and list them:
Re; | 10% | 10° | 10° | 107
Cr | 0.00493 I 0.00315 | 0.00217 I 0.00158

Following a suggestion of Prandtl, we can forget the complex log friction law (4.38)
and simply fit the numbers in the table to a power-law approximation

= 0.02 Re3 ' (4.39)

This we shall use as the left-hand side of Eq. (4.34). For the right-hand side, we need
an estimate for 6(x) in terms of &(x). If we use the logarithmic-law profile (4.35), we
shall be up to our hips in logarithmic integrations for the momentum thickness. Instead
we follow another suggestion of Prandtl, who pointed out that the turbulent profiles in
Fig.4.14 can be approximated by a one-seventh-power law

(%)ll - (%3) v (4.40)

This is shown as a dashed line in Fig.4.14 It is an excellent fit to the low-Reynolds-
number turbulent data, which were all that were available to Prandtl at the time. With
this simple approximation, the momentum thickness can easily be evaluated:

6 ~ ]: (‘g)m[l — (;6)'”] dy = % 5 (4.41)

We accept this result and substitute Eqgs. (4.39) and (4.41) into Karman’s momentum
law (4.34)

- P B
= 002Re; =2 L (= )
s 2 dx ( 72 °,
— 16 d(Red)
or Re; /0 =972 52 =972 £ 5222 4.42
° dx d(Re,) (4.42)
Separate the variables and integrate, assuming 6 = 0 at x = 0O:
- o 0.16
Res =~ 0.16 Re®’ or ~ — 1 (4.43)

X R Cx

Thus the thickness of a turbulent boundary layer increases as x*7, far more rapidly
than the laminar increase x'/2. Equation (4 .43) is the solution to the problem. because
all other parameters are now available. For example. combining Eqs. (4.43) and (4.39).

we obtain the friction variation 0.027
Cp =~ — (4.44)

Re

Writing this out in dimensional form, we have

0'0135#]1’?’()6;’7{/(]3!?
T —

witurb T ‘L,,]f‘?

(4.45)

Dr. Mohsen Soliman 34 -



Turbulent plate friction drops slowly with x, increases nearly as p and U-, and is rather
insensitive to viscosity.
We can evaluate the drag coefficient from Eq. ( 4.33)
0.031 7
Cp= .17 = - ¢r(L) (4.46)

Re}’" 6

Then Cp is only 16 percent greater than the trailing-edge skin friction [compare with
for laminar flow where Cp =2 Cr (L) ].
The displacement thickness can be estimated from the one-seventh-power law:

S ~ f: [1 — (é)m] dy = é 5 (4.47)

The turbulent flat-plate shape factor is approximately

—
'
93}

H— (4.48)

5:|:
7

t‘j‘w|m|_

These are the basic results of turbulent flat-plate theory. 0.5
Recall that for laminar flow, the drag cofficient Cp, = 1.328/ (Re;) " for smooth wall

Figure 4.16 shows flat-plate drag coefficients for both laminar-and turbulent-flow
conditions. The above smooth-wall relations and (4. 46) are shown. along with the ef-
fect of wall roughness, which is quite strong. The proper roughness parameter here is
x/e or I/e, by analogy with the pipe parameter €/d. In the fully rough regime, Cy, is in-
dependent of the Reynolds number. so that the drag varies exactly as U” and is inde-

T o |

5 200
L Fully rough
L _ 300
(S e - = =23
L
LY
"
A" SO0
o v L
h"
b
L
» 1 OOy
O
™
L / ~ =lslalu]
el
/r\\
L OHes = =lalela]
/ -~ 1o
[ =
N T — 2 > 1O
e S
R <+
Turbulent 7 - S > 10
S ialalalisl - — — T — —_—
EHaq. | —— 2 < 107 —
O Tramsition ‘\\1 E— 10OS
ILaminar:
o
LS e LT LO= L

Fig.4.16Drag coefficient of laminar and turbulent boundary layers on
smooth and rough flat plates. This chart is the flat-plate analog of the
Moody diagram for pipe flow

pendent of w. Reference 2 presents a theory of rough flat-plate flow., and Ref. 1 gives
a curve fit for skin friction and drag in the fully rough regime:
c\—25
¢~ (2.87 + 1.58 log ;) (4.49 )

,

/ \—2.5
Cp =~ ( 1.89 + 1.62 log —‘i—) (4.49 b)

Equation (4.495b) is plotted to the right of the dashed line in Fig.4.16. The figure also
shows the behavior of the drag coefficient in the transition region 5 X 10° << Re; <
8 X 107, where the laminar drag at the leading edge is an appreciable fraction of the
total drag. Schlichting [1] suggests the following curve fits for these transition drag
curves depending upon the Reynolds number Re,.,,. where transition begins:
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- 0.031 1440

Rl Re,  Rewam =3 X10° (4.50a)
2= 0031 700
031 _ 6

Example 4.10 :

A hydrofoil 1.2 ft long and 6 ft wide is placed in a water flow of 40 ft/s, with p = 1.99
slugs/ft* and » = 0.000011 ft¥/s. (@) Estimate the boundary-layer thickness at the end of the
plate. Estimate the friction drag for (b) turbulent smooth-wall flow from the leading edge,
(¢) laminar turbulent flow with Reyus = 5 X 10°, and (d) turbulent rough-wall flow with e =
0.0004 ft.

Solution
Part (a)

The Reynolds number is Re; =

UL _ (40 ft/s)(1.2 ft)
v 0.000011 ft*/s

Thus the trailing-edge flow is certainly turbulent. The maximum boundary-layer thickness would
occur for turbulent flow starting at the leading edge. From Eq. (4.43),

=436 x 10°

o(L) 0.16
= = 0.018
L (436 x 109"
or o= 0.018(1.2 ft) = 0.0216 ft Ans. (a)
This is 7.5 times thicker than a fully laminar boundary layer at the same Reynolds number.
Yart (b)
For fully turbulent smooth-wall flow, the drag coefficient on one side of the plate is, from Eq.
(4.46), 0031
Cp = = 0.00349
P (436 x 10917

Then the drag on both sides of the foil is approximately
_ D = 2Cp(pUt)bL = 2(0.00349)(3)(1.99)(40)*(6.0)(1.2) = 80 Ib
Part (c)
With a laminar leading edge and Reg,,s = 5 X 10°, Eq. (4.50u) applies:

1490 _ 0.00316

= 0.00349 — ———
Cp = 0.00349 4.36 X 10

The drag can be recomputed for this lower drag coefficient:

| D = 2Cp(xpUHbL = 72 Ibf Ans. (¢)
Part [d} L 1.2 ft

inallv all. we caleuls —=——=13000
Finally, for the rough wall, we calculate c = 0.0004 ft
From Fig4.16at Re; = 4.36 X 10°, this condition is just inside the fully rough regime. Equa-
tion (4.49h) applies: iy
Cp = (1.89 + 1.62 log 3000)™= = 0.00644
and the drag estimate is D= ZCD(épUZ)!JL — 148 |bf Ans. (d)

This small roughness nearly doubles the drag. It is probable that the total hydrofoil drag is still
another factor of 2 larger because of trailing-edge flow-separation effects.
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4.2.6 Effects of Pressure Gradient

The boundary layer discussions in the previous parts of Section 4.2 have dealt with flow
along a flat plate in which the pressure is constant throughout the fluid. In general, when a
fluid flows past an object other than a flat plate, the pressure field is not uniform. As shown
in Fig.4 6, if the Reynolds number is large, relatively thin boundary layers will develop along
the surfaces. Within these layers the component of the pressure gradient in the streamwise
direction (i.e., along the body surface) is not zero, although the pressure gradient normal to
the surface is negligibly small. That is, if we were to measure the pressure while moving
across the boundary layer from the body to the boundary layer edge, we would find that the
pressure is essentially constant. However, the pressure does vary in the direction along the
body surface if the body is curved. The variation in the free-stream velocity, Uy, the fluid
velocity at the edge of the boundary layer, is the cause of the pressure gradient in the bound-
ary layer. The characteristics of the entire flow (both within and outside of the boundary

layer) are often highly dependent on the pressure gradient effects on the fluid within the
boundary layer.

For a flat plate parallel to the upstream flow, the upstream velocity (that far ahead of
the plate) and the free-stream velocity (that at the edge of the boundary layer) are equal —
U = Uj,. This is a consequence of the negligible thickness of the plate. For bodies of nonzero
thickness, these two velocities are different. This can be seen in the flow past a circular
cylinder of diameter D. The upstream velocity and pressure are U and p,, respectively. If the
fluid were completely inviscid (u = 0), the Reynolds number would be infinite (Re =
pUD/uw = o0) and the streamlines would be symmetrical, as are shown in Fig. 4.17a. The
fluid velocity along the surface would vary from Uy = O at the very front and rear of the
cylinder (points A and F are stagnation points) to a maximum of Uy = 2U at the top and bot-
tom of the cylinder (point C). The pressure on the surface of the cylinder would be sym-
metrical about the vertical midplane of the cylinder, reaching a maximum value of
po + pU*/2 (the stagnation pressure) at both the front and back of the cylinder, and a min-
imum of p, — 3pU?/2 at the top and bottom of the cylinder. The pressure and free-stream
velocity distributions are shown in Figs.4.17 b and 4.17c. These characteristics can be ob-
tained from potential flow analysis of Sections of part (3).

Because of the absence of viscosity (therefore, 7, = 0) and the symmetry of the pres-
sure distribution for inviscid flow past a circular cylinder, it is clear that the drag on the cylin-
der is zero. Although it is not obvious, it can be shown that the drag is zero for any object
that does not produce a lift (symmetrical or not) in an inviscid fluid (Ref. 4). Based on ex-
perimental evidence, however, we know that there must be a net drag. Clearly, since there is
no purely inviscid fluid, the reason for the observed drag must lie on the shoulders of the
viscous effects.

To test this hypothesis, we could conduct an experiment by measuring the drag on an
object (such as a circular cylinder) in a series of fluids with decreasing values of viscosity.
To our initial surprise we would find that no matter how small we make the viscosity (pro-
vided it is not precisely zero) we would measure a finite drag, essentially independent of the
value of . As was noted in part (3) . this leads to what has been termed d’Alembert’s
paradox—rthe drag on an object in an inviscid fluid is zero, but the drag on an object in a
fluid with vanishingly small (but nonzero) viscosity is not zero.

The reason for the above paradox can be described in terms of the effect of the pres-
sure gradient on boundary layer flow. Consider large Reynolds number flow of a real (vis-
cous) fluid past a circular cylinder. As was discussed in Section4.1.2 | we expect the viscous
effects to be confined to thin boundary layers near the surface. This allows the fluid to stick

Dr. Mohsen Soliman -37 -
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Po 2v B FIGURE 4.17

. Inviscid flow past a circular
P Ut cylinder: (a) streamlines for the

Po— l,r.)U‘z . .
2 u flow if there were no viscous ef-
Po—pU2 fects, (b) pressure distribution
on the cylinder’s surface,
3.2 (¢) free-stream velocity on the
Po— 2P c Ry & FYl cylinder’s surface.
8] a0 180 o} =10] 180
@, degrees @, degrees

(V = 0) to the surface—a necessary condition for any fluid, provided p # 0. The basic idea
of boundary layer theory is that the boundary layer is thin enough so that it does not greatly
disturb the flow outside the boundary layer. Based on this reasoning, for large Reynolds num-
bers the flow throughout most of the flow field would be expected to be as is indicated in
Fig.4.17 a, the inviscid flow field.

The pressure distribution indicated in Fig. 4.17b is imposed on the boundary layer flow
along the surface of the cylinder. In fact, there is negligible pressure variation across the thin
boundary layer so that the pressure within the boundary layer is that given by the inviscid
flow field. This pressure distribution along the cylinder is such that the stationary fluid at the
nose of the cylinder (U, = 0 at # = 0) is accelerated to its maximum velocity (U, = 2U at
6 = 90°) and then is decelerated back to zero velocity at the rear of the cylinder (U, = 0 at
6 = 180°). This is accomplished by a balance between pressure and inertia effects; viscous
effects are absent for the inviscid flow outside the boundary layer.

Physically, in the absence of viscous effects, a fluid particle traveling from the front to
the back of the cylinder coasts down the “pressure hill” from # = 0 to # = 90° (from point
A to C in Fig. 4.17b) and then back up the hill to # = 180° (from point C to F) without any
loss of energy. There is an exchange between Kinetic and pressure energy, but there are no
energy losses. The same pressure distribution is imposed on the viscous fluid within the
boundary layer. The decrease in pressure in the direction of flow along the front half of the
cylinder is termed a favorable pressure gradient. The increase in pressure in the direction of
flow along the rear half of the cylinder is termed an adverse pressure gradient.

Consider a fluid particle within the boundary layer indicated in Fig.4.18 | In its attempt
to flow from A to F it experiences the same pressure distribution as the particles in the free
stream immediately outside the boundary layer—the inviscid flow field pressure. However, be-
cause of the viscous effects involved, the particle in the boundary layer experiences a loss of en-
ergy as it flows along. This loss means that the particle does not have enough energy to coast
all of the way up the pressure hill (from C to F) and to reach point F at the rear of the cylinder.
This kinetic energy deficit is seen in the velocity profile detail at point C, shown in Fig.4.18 a.
Because of friction, the boundary layer fluid cannot travel from the front to the rear of the cylin-
der. (This conclusion can also be obtained from the concept that due to viscous effects the par-
ticle at C does not have enough momentum to allow it to coast up the pressure hill to F))
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The situation is similar to a bicyclist coasting down a hill and up the other side of the
valley. If there were no friction the rider starting with zero speed could reach the same height
from which he or she started. Clearly friction (rolling resistance, aerodynamic drag, etc.)
causes a loss of energy (and momentum), making it impossible for the rider to reach the
height from which he or she started without supplying additional energy (i.e., peddling). The
fluid within the boundary layer does not have such an energy supply. Thus, the fluid flows
against the increasing pressure as far as it can, at which point the boundary layer separates
from (lifts off) the surface. This boundary layer separation is indicated in Fig. 4.18 a.
Typical velocity profiles at representative locations along the surface are shown in Fig4.18 b.
At the separation location (profile D), the velocity gradient at the wall and the wall shear stres
are zero. Beyond that location (from D to E) there is reverse flow in the boundary layer. -

/ N
/ > Boundary 9 -
layer P o = -
! - \ 'y R
' 8 I Boundary layer g C:)
l w | / —/4 separation
- c 4l [ location

+

Boundary layer
fluid has kinetic
energy deficit

1.0
(B) {a)
2.0
. ) . (c)
Locations indicated in Inviscid
Fig. 4.18a, and 4.19
i 1.0 theory ,
' C,=1-4sin’6

L os /

0.0 Turbulent '!
ola
bl
Separated 'I.:h &
flow | 10
\
-2.0
| - \ /
0.2 0O 02 04 06 08 1.0 \ /
: du » 0 457 a0 135° 180
For profile DK =0aty=0 6
B FIGURE 4.18 Boundary layer characteristics on a circular cylinder: (a) boundary

layer separation location, (b) typical boundary layer velocity profiles at various locations on the
cylinder, (¢) surface pressure distributions for inviscid flow and boundary layer flow.

As is indicated in Fig.4.18 c. because of the boundary layer separation, the average
pressure on the rear half of the cylinder is considerably less than that on the front half. Thus,
a large pressure drag is developed, even though (because of small viscosity) the viscous shear
drag may be quite small. D’Alembert’s paradox is explained. No matter how small the vis-
cosity, provided it is not zero, there will be a boundary layer that separates from the surface,
giving a drag that is, for the most part, independent of the value of .
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The location of separation, the width of the wake region behind the object, and the
pressure distribution on the surface depend on the nature of the boundary layer flow. Com-
pared with a laminar boundary layer, a turbulent boundary layer flow has more kinetic energy
and momentum associated with it because: (1) as is indicated in Fig. E4.6. the velocity profile
is fuller, more nearly like the ideal uniform profile, and (2) there can be considerable en-
ergy associated with the swirling, random components of the velocity that do not appear

in the time-averaged x component of velocity. Thus, as is indicated in Fig. 4.18c, the
turbulent boundary layer can flow farther around the cylinder (farther up the pressure hill)
before it separates than can the laminar boundary layer.

The structure of the flow field past a circular cylinder is completely different for a zero
viscosity fluid than it is for a viscous fluid, no matter how small the viscosity is, provided
it is not zero. This is due to boundary layer separation. Similar concepts hold for other shaped
bodies as well. The flow past an airfoil at zero angle of attack (the angle between the up-
stream flow and the axis of the object) is shown in Fig. 4.19 a; flow past the same airfoil at
a 5% angle of attack is shown in Fig.4.19 b. Over the front portion of the airfoil the pressure
decreases in the direction of flow—a favorable pressure gradient. Over the rear portion the
pressure increases in the direction of flow—an adverse pressure gradient. The boundary layer
velocity profiles at representative locations are similar to those indicated in Fig. 4.18 b for
flow past a circular cylinder. If the adverse pressure gradient is not too great (because the
body is not too “thick” in some sense), the boundary layer fluid can flow into the slightly
increasing pressure region (i.e., from C to the trailing edge in Fig. 4.19 a) without separating
from the surface. However, if the pressure gradient is too adverse (because the angle of at-
tack is too large), the boundary layer will separate from the surface as indicated in Fig.4.19 b.
Such situations can lead to the catastrophic loss of lift called srall., which is discussed in
Section 4 4.

Streamlined bodies are generally those designed to eliminate (or at least to reduce) the
effects of separation, whereas nonstreamlined bodies generally have relatively large drag due
to the low pressure in the separated regions (the wake). Although the boundary layer may be
quite thin, it can appreciably alter the entire flow field because of boundary layer separation.
These ideas are discussed in Section 4.3.

B FIGURE 4.15
Flow visualization
photographs of flow
past an airfoil (the
boundary layer veloc-
ity profiles for the
points indicated are
similar to those indi-
cated in Fig.4.18 b):
(@) zero angle of at-
tack, no separation,
(b) 5° angle of attack,
flow separation. Dye
in water. (Photograph
courtesy of ONERA,
France.)

eparation

(b)
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4.2.7 Boundary Layers with Non-zero Pressure Gradient:

The flat-plate analysis of the previous section should give us a good feeling for the be-
havior of both laminar and turbulent boundary layers, except for one important effect:
flow separation. Prandtl showed that separation like that in Fig.4.18a is caused by ex-
cessive momentum loss near the wall in a boundary layer trying to move downstream
against increasing pressure, dp/dx = 0, which is called an adverse pressure gradient.
The opposite case of decreasing pressure, dp/dx << 0, is called a favorable gradient,
where flow separation can never occur. In a typical immersed-body flow, e.g., Fig4.18a,
the favorable gradient is on the front of the body and the adverse gradient is in the rear,
as discussed in detail in Part (3) .

We can explain flow separation with a geometric argument about the second deriv-
ative of velocity i at the wall. From the momentum equation ( 4.5 ) at the wall, where
u = v = 0, we obtain

; .2
ot a u dU dp
— o = —pU —= f_,
dy [ wall ay wall dx dx
"2
a u 1 dp
or = — L 4.51
(:}._\-'2 wall jis dx ( )

for either laminar or turbulent flow. Thus in an adverse gradient the second derivative of
velocity is positive at the wall: yet it must be negative at the outer layer (v = ) to merge
smoothly with the mainstream flow U(x). It follows that the second derivative must pass
through zero somewhere in between, at a point of inflection, and any boundary-
layer profile in an adverse gradient must exhibit a characteristic S shape.

Figure 4.20 ijllustrates the general case. In a favorable gradient (Fig4.204) the profile
ap

— =0
dx
U U .
u o
7
-
PI
o u
> y Backflow
PI B
T,=0
PI
(a) Favorable (b) Zero (c) Weak adverse (d) Critical adverse (¢) Excessive adverse

gradient: gradient: gradient: gradient: gradient:
dU dU _ r dp : :
I =0 v 0 du <0 ap -0 Zero slope Backflow -

X dx dx dx at the wall:

at the wall: )

dp dp . Separated
e <9 2 =9 No separation, Separatio flow reai

> . - - Pl in the flow Separation oW region
No separation, No separation,
PI inside wall PI at wall

Fig.4.20Effect of pressure gradient
on boundarv-layver profiles: PI =
point of inflection.

is very rounded, there is no point of inflection, there can be no separation, and lami-
nar profiles of this type are very resistant to a transition to turbulence [1 to 3].

In a zero pressure gradient (Fig.4.20D), e.g., flat-plate flow, the point of inflection
is at the wall itself. There can be no separation, and the flow will undergo transition
at Re, no greater than about 3 X 10°, as discussed earlier.
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In an adverse gradient (Fig.4.20¢ to e), a point of inflection (PI) occurs in the bound-
ary layer. its distance from the wall increasing with the strength of the adverse gradi-
ent. For a weak gradient (Fig.4.20¢) the flow does not actually separate. but it is vul-
nerable to transition to turbulence at Re, as low as 10° [1. 2]. At a moderate gradient,
a critical condition (Fig4.20d) is reached where the wall shear is exactly zero (du/dy =
0). This is defined as the separation point (1,. = 0), because any stronger gradient will
actually cause backflow at the wall (Fig4.20¢): the boundary layer thickens greatly,
and the main flow breaks away. or separates, from the wall (Fig.4.17a).

The flow profiles of Fig.4.20usually occur in sequence as the boundary layer pro-
gresses along the wall of a body. For example, in Fig.4.17a, a favorable gradient oc-
curs on the front of the body. zero pressure gradient occurs just upstream of the shoul-
der, and an adverse gradient occurs successively as we move around the rear of the
body.

A second practical example is the flow in a duct consisting of a nozzle, throat, and
diffuser, as in Fig.4.21. The nozzle flow is a favorable gradient and never separates, nor

Separation

oint  TwZ
Boundary P

layers

/

@ck flow

iy

Profile point
of inflection

Nearly
inviscid
core flow

— Dividing
—|  streamline

?_"_ .

-

/7

Separation

Nozzle: Throat: Diffuser: \
Decreasing Constant Increasing pressure

pressure pressure and area

and area and area
Increasing Velocity Decreasing velocity

velocity constant
Favorable Zero Adverse gradient

gradient gradient (boundary layer thickens)

Fig.4.21 Boundary-layer growth and separation in a nozzle-diffuser configuration.

does the throat flow where the pressure gradient is approximately zero. But the ex-
panding-area diffuser produces low velocity and increasing pressure, an adverse gra-
dient. If the diffuser angle is too large, the adverse gradient is excessive, and the bound-
ary layer will separate at one or both walls, with backflow, increased losses, and poor
pressure recovery. In the diffuser literature [10] this condition is called diffuser stall, a
term used also in airfoil aerodynamics (Sec. 4.3) to denote airfoil boundary-layer sep-
aration. Thus the boundary-layer behavior explains why a large-angle diffuser has heavy
flow losses and poor performance .

Presently boundary-layer theory can compute only up to the separation point, after
which it is invalid. New techniques are now developed for analyzing the strong inter-
action effects caused by separated flows [5, 6].
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The Laminar Integral Theory:
Both laminar and turbulent theories can be developed from Karman’s general two-
dimensional boundary-layer integral relation [7], which extends Eq. (4.34 ) to variable
U(x) T
FZ%(}Z%—F(Z-FH)—S% (4.52)
where 6(x) is the momentum thickness and H(x) = &%(x)/6(x) is the shape factor. From
Eq. (4.51) negative dU/dx is equivalent to positive dp/dx, that is, an adverse gradient.
We can integrate Eq. (4.52) to determine 6(x) for a given U(x) if we correlate ¢qand
H with the momentum thickness. This has been done by examining typical velocity
profiles of laminar and turbulent boundary-layer flows for various pressure gradients.
Some examples are given in Fig.4.22, showing that the shape factor H is a good indi-
cator of the pressure gradient. The higher the H, the stronger the adverse gradient, and
separation occurs approximately at
H o~ {3.5 laminar flow
24 turbulent flow

(4.53)

The laminar profiles (Fig.4.22a) clearly exhibit the S shape and a point of inflection
with an adverse gradient. But in the turbulent profiles (Fig.4.22b) the points of inflec-
tion are typically buried deep within the thin viscous sublayer, which can hardly be
seen on the scale of the figure.

There are scores of turbulent theories in the literature, but they are all complicated al-
gebraically and will be omitted here. The reader is referred to advanced texts [ 1, 2, 9].

For laminar flow, a simple and effective method was developed by Thwaites [11].
who found that Eq. (4.52) can be correlated by a single dimensionless momentum-
thickness variable A, defined as 0° dU

A= —
v o dx

Using a straight-line fit to his correlation, Thwaites was able to integrate Eq. (4.52) in
closed form, with the result

(4.54)

g (&) 15 -
o — 63 (o) + 2Bv [T s gy (4.55)
1.0 1.0
Favorable 0 LTl A
gradients: : H= 6% -13
8
0.8 —
07— /¥ o
2.6 (Flat plate) R
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2.7 N
20 i AN
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inflection
(adverse 01—
gradients) ' (D)
| I | | | | I | | | |
y 0.6 0.8 1.0 0 0.1 02 03 04 . 05 06 07 08 09 10
8 B

Fig.4.22 Velocty profiles with pressure gradient: (a) laminar flow:, (b) turbulent flow with adverse gradients,

Dr. Mohsen Soliman 43 -



where 65 is the momentum thickness at x = O (usually taken to be zero). Separation

(cyp = 0O) was found to occur at a particular value of A
Separation: A= —0.09 (4.56)
Finally. Thwaites correlated values of the dimensionless shear stress 8§ = +,,.60/(ul/) with

A. and his graphed result can be curve-fitted as follows:

Ty 7

S(A) = Y,

= (A + 0.09)°°2 (4.57)

This parameter is related to the skin friction by the identity

S = Lcr Rep (4.58)

Equations (4.55) to (4.57) constitute a complete theory for the laminar boundary layer
with variable U/(x). with an accuracy of = 10 percent compared with exact digital-com-
puter solutions of the laminar-boundary-layer equations. Complete details of
Thwaites”™ and other laminar theories are given in Refs. 2 and 3.

As a demonstration of Thwaites™ method. take a flat plate. where U = constant, A =
O. and 65 = 0. Equation (4.55) integrates to 02 — 0.45px
L.f
o 0.671
or ~ RZ (4.59)

This is within 1 percent of Blasius’ exact solution.
With A = 0, Eq. (4.57) predicts the flat-plate shear to be

7wl _ (0.09)002 = 0225
pt
or 27, 0.671 (4.60)
Ccp= = .
! p.Uz Re!/?
This is also within 1 percent of the Blasius result, . However, the general ac-

curacy of this method is poorer than 1 percent because Thwaites actually “tuned” his
correlation constants to make them agree with exact flat-plate theory.

We shall not compute any more boundary-layer details here, but as we go along,
investigating various immersed-body flows, especially in Chap. 8., we shall
use Thwaites” method to make qualitative assessments of the boundary-layer be-
havior.

Example 4.11 :

In 1938 Howarth proposed a linearly decelerating external-velocity distribution
U(x =U(1—— I
(x) 01 L] (L

as a theoretical model for laminar-boundary-layer study. (¢) Use Thwaites” method to compute
the separation point xe, for #; = 0. and compare with the exact digital-computer solution
Xsep/L = 0.119863 given by H. Wipperman in 1966. (b) Also compute the value of ¢y = 21'“-;’(,0{;’2)
at x/L = 0.1.

Solution

Part (a)

First note that dU/dx = —Ugy/L = constant: Velocity decreases, pressure increases, and the pres-
sure gradient is adverse throughout. Now integrate Eq. (4.55)
> 0.45v s X\ vL [/, x\7°
= —————=¢ Ul ——) dx=0075 — |1 —— -1 2
= Uk — J() ”( L) o Us [( L) ] (2)
Then the dimensionless factor A is given by
¢ du Ui (o x\TO
Az—‘—z—ﬁz—omﬁ(l—ij —1 (3)
Voodx vl L

From Eq. (4.55) we set this equal to —0.09 for separation
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Asep -6
Asep = —0.09 = —0.075 (1 — Tj —1

or 2
This is less than 3 percent higher than Wipperman’s exact solution, and the computational ef-
fort is very modest.

Part (b)

To compute crat x/L = 0.1 (just before separation), we first compute A at this point, using Eq. (3)

=1—(22)y " =0.123 Ans. (a)

Alx = 0.1L) = —0.075[(1 — 0.1)"° — 1] = —0.0661
Then from Eq. (4.57) the shear parameter is
S(x =0.1L) = (—0.0661 + 0.09)"%* = 0.099 = %(._'f Regy (4)
We can compute Reg in terms of Re; from Eq. (2) or (3)

& _ 0.0661 _ 0.0661

1 Ul Re;
or Rep, = 0.257 Rel?  at f = 0.1
Substitute into Eq. (4): 0.099 = 4c,(0.257 Re}?)
0.77 U
or cr= F}fﬁ Re; = —V— Ans. (b)

We cannot actually compute ¢ without the value of, say, UyL/v.

4.3 Thermal Boundary Layer on a Flat Plate with Zero Pressure Gradient:

In all previous discussions (Sec. 4.1 & 4.2), any immersed body and any moving fluid around
it were both kept at the same temperature, T, of the free stream flow (i.,e., the uniform flow
far from the body with a velocity U, parallel to the axis of the body in most cases) For this
case we have only one boundary layer generated along the surface of the body because of the
no-slip condition and the viscous effects in the wall region. This boundary layer is called the
Momentum Boundary Layer (M.B.L) as it is related to the momentum transfer in the viscous
region. The analysis given in Sec.4.1 and 4.2 is all related to this M.B.L (Fig. 4.23).

In this section, however, the surface of the body, or the wall temperature, is kept at a
constant temperature, Ty, greater than or less than T, of the free stream flow (Fig.4.24).
Because of the temperature difference, Ty, - T.., heat transfer (or forced convection) must take
place between the wall and the moving fluid (heat transfer must be from the higher
temperature to the lower one according to the 2™ law of thermodynamics). If T, > T., the
heat flux moves from the wall to heat the moving fluid while if T,< T, the heat flux moves
from the moving fluid to heat the wall.

In this section we give an example of the integral method analysis as it is applied to the
Thermal Boundary Layer (T.B.L) over a flat plate with zero pressure gradient. Our objective is
to calculate the heat flux from or to the plate with specified Ty, or to find T, for a given heat
flux. The convective heat transfer coefficient, h, is defined by:

q” =h (Tw - TOO)

where q” 1s the heat flux in direction normal to the wall, in units of watt/m’

and h is average heat transfer coefficient over the heated plate,in units of watt/ K°.m”.
This average value, h, is to be calculated from a local heat transfer coefficient h(x) which is a
function of the distance x along the plate. Our task in this section is to find h(x).
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Flat Plate

With a fluid flowing parallel to a flat plate, changes in velocity and temperature of the fluid are confined
to a thin region adjacent to the solid boundary — the boundary layer. Several cases arise:

1. Flows without or with pressure gradient

2. Laminar or turbulent boundary layer

3. Negligible or significant viscous dissipation (effect of frictional heating)
.Prz207o0Pr<l

Flows with Zero Pressure Gradient and Negligible Viscous Dissipation

I

When the free-stream pressure is uniform, the free-stream velocity is also uniform. Whether the boundary
layer 1s laminar or turbulent depends on the Reynolds number Rey (pU,.x/11) and the shape of the solid
at enfrance. With a sharp edge at the leading edge (Figure 4.23 ) the boundary layer is initially laminar
but at some distance downstream there is a transition region where the boundary layer is neither totally
laminar nor totally turbulent. Farther downstream of the transition region the boundary layer becomes
turbulent. For engineering applications the existence of the transition region is usually neglected and it
is assumed that the boundary layer becomes turbulent if the Reynolds number, Re;. is greater than the
critical Reynolds number. Re,. A typical value of 5 x 10° for the critical Reynolds number is generally
accepted, but it can be greater if the free-stream turbulence i1s low and lower if the free-stream turbulence
is high. the surface is rough. or the surface does not have a sharp edge at entrance. If the enfrance is
blunt, the boundary layer may be turbulent from the leading edge.

U. T.
—_————

Edge of the boundary layer

<+ B d e

Laminar " Transition Turbulent -

FIGURE 4.23 Flow of a fluid over a flat plate with laminar, transition, and turbulent boundary layers.

Temperature Boundary Layer

Analogous to the velocity boundary layer there is a temperature boundary layer adjacent to a heated (or
cooled) plate. The temperature of the fluid changes from the surface temperature at the surface to the
free-stream temperature at the edge of the temperature boundary layer (Figure'4.24 ).

Temperature boundary layer T.B.L
Velocity boundary layer M.B.L

FIGURE 4.24 Temperature boundary layer thickness relative to velocity boundary layer thickness.

The velocity boundary layer thickness & depends on the Reynolds number Re,. The thermal boundary
layer thickness 6, depends both on Re, and Pr
Viscous dissipation and high-speed effects can be neglected if Pr'? Ec/2 <€ 1. For heat transfer with

significant viscous dissipation see the section on flow over flat plate with zero pressure gradient: Effect
of High Speed and Viscous Dissipation. The Eckert number Ec is defined as Ec = U ..-"'CP(TS 1)
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4.3.1 Integral Analysis of Thermal Boundary Lavyer over a Flat Plate:

Consider the flow of a uniform and unbounded stream of viscous fluid over a flat plate (of unit
depth normal to the paper, dz = 1) as shown in Fig.4.25. The plate is kept at constant
temperature Ty, starting at some distance X, downstream the leading edge (x = 0). The length
of the plate between x = 0 and x = X, 1s kept at T,, as for the free stream which has an
enthalpy of , h,,, and a velocity U, # f(x,y) for this zero pressure gradient case. We shall apply
the integral form of the energy equation (1% law of thermodynamics) on the shown integral
control volume which include both the M.B.L. of thickness, 6(x), and the T.B.L. of thickness
or(x). Recall from Fig.4.24, that 6 may be larger than or smaller than & depending on the
value of Pr number of the fluid. The case shown on fig. 4.25 is of & > o1 which means that Pr
# >1 (such as for water).

As shown in Fig.4.25, the M.B.L. starts at x= 0 while the T.B.L. starts at x= X,. At any
point x > X, along the plate, the axial velocity profile in the M.B.L. is u(y) while the
temperature profile is T(y) and the heat flux is dQ/dt as shown. We shall also apply the mass
integral equation on the control volume between the cross-section at x, the cross-section at
x+Ax and across the T.B.L. edge in order to find the energy crossing these 3 cross-sections.

Control volume Stream line outside B.L -
[d_onj U“’ X A mmm T "“’“""'_l;__ A

=<

=0 i Tw = const
At
Fig. 4.25 the notations for analysis of T.B.L. over a flat plate w1tld% =0

For the above control volume, the energy equation for a steady, incompressible, 2-D flow, and
neglecting body force with no shaft work and 1is:

J.( +e+gy+;u +1vij (4.61)

where £ +e = h (specific enthalpy, j/kg ), also v <<u , .. V' <<u’ <<h, the energy eq. is reduced to

dQ 1,
WO h+iuz|pv.aa 4.62
dr ( " jp— - (4.62)

cs
the R.H.S. is the summation of the energy fluxes crossing the control surface by the flow field. We
have to perform this integration at the cross-section at x, the cross-section at x+Ax and across the
T.B.L. edge. The mass flux crossing at x is: . T
my =— J‘ pu dy o

if we neglect the viscous dissipation because 1> << /i , the energy flux at x is: 1 =— J. puh dy

Note: the —ve sign because the dot product (V. dA) is —ve for th ‘
The mass flux p(V . dA) at x+Ax must be +ve and is equal to: { Lou dy +— [ _[,cm cfy] ,f_\x}

This mass flux must be greater than the mass flux entering at x due to increase in 0 as X is increased.
L
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The increase in mass flux must go across the T.B.L.edge (mg). This difference must be —ve and is:
s

m d(;;ajm d ijudyAx
s =— _-
de dx| 3
This mass entering the T.B.L. carrying the enthalpy of the free stream (/_ outside T.B.L). The energy

flux which goes through the T.B.L. edge is: 15 =m, - h
If we add all the energy fluxes across the control surface, the energy equation (4.62) becomes:

dx dt dy

1 +i(1 )Ax +1 +1 =d—Q=—K a—T Ax (per unit width Az=1)
X X x 0 ! . :
r 4
the energy flux that crosses at the cross-section at Xx+Ax is: { _i,a uhdy + e [ fp uh dy] fll.x}
v o

By substitution and canceling similar terms with different signs, we get:
J o
d|t d|t oT
— uh dy|—h,— dy|=—-K,| — we divided by Ax
dxhp y} ”dxhp” y} f(ayjo ( y Ax)

where K is the thermal conductivity of the fluid. If we put (dh=C, dT ) and move p C, (which are
constants) to the R.H.S, the energy equation becomes:

o
CAN . _ K for) _ (o7
dxh(Tw T)u dy}pc,,(ayl_a(aylo (4.63)

where « = the fluid thermal diffusivity. We note that the integral upper limit must cover all the width
o, because by definition, outside the T.B.L. T(y)= T or (T -T)=0.0.

Equation (4.63) is the Energy Integral Equation (similar to the Momentum Integral Equation 4.26). It
may be used for both laminar and turbulent flows and for fluids having any value of the Pr number
where Pr = v/o (the ratio of the fluid kinematic viscosity to its thermal diffusivity). We must note
also that the velocity profile u(y) of the M.B.L. is coupled with the temperature profile 7(y) on the
L.H.S. of (4.63) while only the gradient of T7(y) exists on the R.H.S. of (4.63). In this section, we
shall consider only the solution for a Laminar flow Boundary Layer. Other cases are beyond the scope
of our study.

4.3.2 Solution of The Energy Integral Equation For Laminar Flow:

By solving the Energy Integral Equation 4.63 (i.e., doing the integration at the cross-section normal to
the plate at the point x as shown on Fig. 4.25), we should be able from such a solution to get the
distribution of the T.B.L. thickness or(x) and finally the heat transfer coefficient /(x) and the heat flux
q”(x) as discussed before in the beginning of Sec.4.3.

By analogy to the various methods used to solve the Momentum Integral Equation (4.26), in order to
solve the Energy Integral Equation (4.63), we have to assume a velocity distribution u(y) inside the
M.B.L and also assume another temperature distribution 7{(y) inside the T.B.L region. Many different
types of velocity profiles u(y) were used before in Sec.4.2, also many different types of temperature
profiles may be assumed here for 7(y) as long as they satisfy the known temperature boundary
conditions as discussed here. We do not need to assume 7(y) to be similar to or to be different than
u(y) in any way. Just any two profiles 7(y) and u(y) may be assumed to solve the Energy Integral
Equation (4.63). It is true that we shall find infinite number of solutions for all types of the assumed
profiles u(y) and 7(y). We must note that the final results shall depend strongly on both the assumed
profiles u(y) and T(y). The following example shall clarify this point:

4.3.2.1 Example Using 3" Order profiles for both u(y) and T(y):

Since T,, and T, are constants, we define two temperature differences: ( 0=7-1, , 6.=T.-T, )

(note: do not mix 0 with the boundary layer momentum thickness as it was defined before in Sec.4.1
& 4.2). We shall assume 3™ order polynomial for the dimensionless temperature profile:
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2 3
Let 0 _T-Ty —a+b L+ | +al L
6. T.-T, s ) s s

We need 4 boundary conditions to get the unknown constants a, b, ¢, and d. We have two known
conditions at y=0 and two known conditions at y= dr

2
At y=0, - T=T, & 3—€ =0 (i.e., the maximum heat flux must be at the wall)
y
oT . . o
Aty=9,, ~ T=T, & 5 =0  (similar to the patching condition at the edge of M.B.L)
Y
After doing mathematical work, we get ( a=c=0, b= % . d= _%] , By substitution we have:
o0 _1-1, 3(y) ify) 0
6. T.-T, 2\0,) 2\0,
Similarly, assume a 3" order profile for u(y) as: 2 =
a2 )2 T o)
1, & ] 5
The usual 4 boundary conditions on u(y) are: 2
At y=0, u=0 (no slip-condition) and —=0 (i.e., maximum shear is at the wall)
At y=0, u=U, & 2—11 =0 (the patching condition at the edge of the M.B.L)
o
- - Lo 3 () (Y
After doing mathematical work, we get: U2 ( 5 j 5 ( 5 j 2)

Interring both equations (1) and (2) into the L.H.S. of the Energy Integral Equation (4.63), we get:

%H(Tm T dy} - %ﬁ(@ ~0)u dy} —6.U. %ﬁ(l—?]({fij dy}

e
208, ) 216, 2\6) 2\6 Ay ),
Using eq.(1) in the R.H.S., we get: & {%};& %lﬂm [%[5%}_%[;‘_1*} ]Jr Twl = Zﬁ{i—j}

Note that the constant of (3/2) on the R.H.S depends totally on the shape of the assumed profile Hi

=)

v d
dx

S C— <

Note also that the upper limit of the integration must in all cases cover the thickness of the T.B.L. up
to Y= Jr for all types of fluids regardless of the value of 6 of the M.B.LL as shown on fig. 4.25. We
may have two different cases depending on the type of the fluid and the value of Pr # where

P number = v Kinematic Viscousity  pC,  convective heat transfer
’ & thermal diffusivit y K,  conductive heat transfer

The convective heat transfer is due to the fluid motion in the M.B.L. while the conductive heat transfer
is due to the temperature gradient and effect of thermal diffusivity in the T.B.L. This means that the
numerical value of Pr number is proportional to the ratio of (8 / dt) which is shown on fig.4.24 and
the next figure. 5,

S
. e S
If P<1, .. 0<0,(e.g., for air and gases), T
If P>1, .. 0>0,(e.g., for water and liquids)
. R P o<1 . Fa |
For example: for air: P. =0.71 up to 600°C g Air " Water
While for water: Pr=4 at 38 °C & Pr =2 at 93 °C

The P number has been found to be the parameter which relates the relative thickness of the
hydrodynamic and thermal boundary layers. The momentum diffusivity gives information about the
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rate at which momentum may diffuse because of molecular motion. Thermal diffusivity gives
information about the rate at which heat may diffuse in the fluid. Thus the ratio of the momentum
diffusivity / the thermal diffusivity should express the relative magnitude of diffusion of momentum
and heat in the fluid. Large diffusivity means that the viscous or temperature influence is felt farther
out in the flow field. For very high P number the velocity B.L will be much thicker than the thermal
B.L.

For the case of dr <8 or Pr> 1 ( such as water) & for Laminar Flow

As shown on Fig.4.25, in this case we need only to carry out the integration in the energy eq.(3)
Y =0, since the integrand 7, —T iszerofor Y >0,
Then the energy eq is:

P 3 3
0. U. da I l—é Y +l i é[lj_l[lj dy _3a6, (4)
dx | 200, ) 2\ 0, 200) 2\0d 26,
This equation is valid only for the assumed 3" order UL &Hi . After expansion and doing

o =)

integration from y =0 to y =4,, and also we define the ratio g as: &= %{
We get: U 4 5[18 _i 4) _3a &)
dx 20 280 20 ¢

Since &£<1 we may neglect %84 as compared to %82 and the above eqn. reduces to:

3y 4 () 20

20 T dx 20¢
Note that & :fl(x) and that € = f5(x). Then after doing the product differentiation on the L.H.S. we get:
( 167 d.s p5d0 dﬁj
dx 3 | 3
We can get (dé/dx) using the momentum integral equation method (with UL = 5(%)—;(?) ) and

for the Laminar Flow case. You can do this part as an exercise to prove the following steps.
Using equations (4.26, 4.28) and the definition of the momentum thickness with the assumed u/U.,

we get: sas=202 4 or 5= B0V,
13U, 13 U,
0 4.641 d
The constant ¢ =0 because d =0 at x=0, we getfinally —= (only for 3™ order u/U,)
x  4/Re,

by substitution of (dd/dx) into eqn. (6) it is reduced to: 1 U ( 560 v x & de +@ v 3J —

which can be written as: 10 13 U_m dx 13 U_
graxg B2 or gy de’ _13a (7
dx 14 v 37 dx 140

This ordinary differential equation (7) is linear and of the 1*" order for the variable (&£%). Its solution
includes a solution of its complementary function added to the source term (/30/14v). The
complementary function of (7) is: 4.4de° e’

e+ — =0
Which integrates to : £ = ax_% , 3
where &, is the complementary solution of & and (a) is a constant to be found from the known
boundary conditions on €. \ 3 131
And the final solution is given by : e =ax’* +a F (®)

v
where P =—
a
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1)

€= FT =0 at x=x,
To get (a), from boundary conditions we have: , After inserting (a) in (8),
34
. . S, 1 B Xo jA
. Ir e~ p|1-| 20
the solution for &(x) is: s T Tow D [ ( . 9)
which is valid only for 3™ order profiles for UL & 9
a “ a7
The local heat transfer coefficient is given by: By =- f\} [ E] / (Ty - T, )
6 T-T, 3 1 W
We use the assumption: 5 =7 =2(§J‘2(;]
: . ) 1
Then h = 3K , where J= 4641 x for the assumed 3™ order profile: L é77 e/

*2e8 JRe, u., 2" 2

Which after substitution for € & J becomes: JA AR
wiu ? X, 7
h,=0.332 Ks P, 3(—‘” j 1- [—Oj (10)
X

h
The Nusselt number is: Nu, =— Y U x
Ky %_7%
Nu, =0.332 P,% Re? [1_(&) (11
If the entire plate is heated,.. x, =0 X |
a B

Then N., =0.332 P/*R.>

The average H.T coefficient and N. averaged over 0 — L

I
R Jy——

L
h= %J‘hx dx=2h) we neglect x, (only in doing the integratior a
0

— Z L — 1 % % _%
N="Eoow), - h=0.664 K PA [U_j [1_(x_oj ] (12)
Ky vL L
_ 1 %
- No=0.664 K; PSR {1—(’“—2) ] (13)

The previous analysis was based on assumption that fluid properties are constants through out the
flow. If there is appreciable variation between wall and free-steam conditions, it is recommended that
the properties be evaluated at the mean file temperature defined by: Ty = (T,,+7..)/2

For the case of &r> 98 or Pr <1 ( such as Air) & for Laminar Flow: | &

Using the same 3" order profiles for u(y)& T(y), &5
The integral energy equation (4) is the same:

g |5 3 1 3 3 1 3 3 'Pr =1 a
Y K ¥ ¥ 3 .

i E{'ﬂf [1 ) E[g_r] "2 [5_1*] }{E [E]_ 5[5] }dy} e 4) Fig.4.26

The integration upper limit is also ¥ =3, because (1-6/6,,) have non-zero values after y >4, but

uw/U,=1 in the part y>J

. . . o 6 | u 4 4
Therefore, the integration in the L.H.S. of (4) is: { = J;(l - 0—) U + l(l - H_J (14)

After expansion and using £ = ?T and doing all the above integrations with the shown two limits,
. d oo 1.2 1 1 71 _
we get: Umdx[g [48 48+E_% o2 = o
Since ¢ >1, we can neglect the last term in (15) as compared to other terms. The final equation is:

ap x (dez/dx) + a, x (de/dx) + a3 &+ ay € = (1/Pr) + as (15)

where the constants are: dj =5.3847, dy =21.539, d 3= 5.3846, d4=- 5.3856, and d5=2.1538
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The exact solution of (15) is very complicated and involves a complex 1* order ordinary differential
equation for €2 and & with non-zero source term. The exact solution of (15) is beyond the scope of
our discussion here. Instead, we try another approximate solution for fluids with Pr # < 1. In Fig.4.26,
we should note that the variation in 7{(y) is very small for y>¢ and in all the region between 6 and ot
which means that in eq. (14), the integration of the last term on the R.H.S. shall be very small outside
the M.B.L. because (1- 6/0,) = 0.0 as compared to the integration from y=0 to y=06. Therefore, we
neglect last term on R.H.S. of (14) as compared to the 1* term. We get:

e G GIEOE CINE

After expansion and doing the integration from y =0to y =, also using the variable € = L3 , We

et v dfs(3-2 1.4 1)) e
1 1 dx 8 5 & 35 ¢ 29,
because ¢ >1, - ; > —5 ,we may neglect the last term with — as compared to the term with l
£
Then U 4 5(§_§lj :3_05
“ dx 8 5 ¢ 29,
after doing the product differentiation, we get: U E(ijﬁ+ (é_éljﬁ _la
“|5\e*)dx \8 5 &)dx| 20¢
or U. 3gpLde) (3,3 5d—5 P (17)
5 € dx 8 5) dx 2

We get & & (dd/dx) using the momentum integral equation (with 3" order profile for u//U,) and for

the Laminar Flow case we have: & 4o _140 v & o = 2800 x
dx 13 U, 13 U,

After substitution € 0501201162405 (18)

€ dx v
This ordinary differential equation is linear and of the 1% order for the variable (g).For the

complementary function, we get xl % +0.521 £ =0 which can be integrated to give:
£ dx
~192& de= ldx _byimegdton 1192 & =Inx+ In (a)= In (ax) - where In(a) is a constant.

Then - 1.92
In(ax)

, we must not that x > x,

5 In(ax) P

r

The total solution &€= ﬁ _ 192 +{0'1 16 + 0.5]

To get the constant (a), from boundary conditions £=0 ar x=x, then: In@)=— Inx, +0111'?
- - & (aaT T 934
Local H.T coefficient h(x) at x > X, is given by: ;, _ Y)w _ 3K where also 16 =

T, -T., 2¢€0

-1
A/ Re
Then &, =0.3233 K{ 1.92 +(0'116 +0.5H — , where In(a) is given above

In x+1In(a) P X
-1
No = 2 =03233| — 122 [O16 51l R only for xo> 0.0 (20)
Ky In x+In(a) P

Example:

Air at 25°C and 1.0 atm. Flows over a flat plate at a speed of 2 m/sec. The plate has a unit width and is
heated over its entire length, L, to a temperature of 75°C. Use the integral momentum & energy
equations with cubic profiles (3™ order) for both the velocity u(y) and temperature 7(y) to:

a) Calculate the M.B.L thickness at distance 10 cm & 20 cm from the leading edge.
b) Calculate the mass flow which enters the M.B.L between x = 10 cm & x =20 cm.
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¢) Calculate the rate of H.T in the first 10 cm of the plate and the first 20 cm of the plate.
Solution

The mean film temp.: T, = %(25 +75)=50 °C, the air properties p = R—PT =1.09 kg/m’, P+=0.7

Ky =0.024 Kcal/ hrm.”C =0.0279 W/m.’C, v=0.086 m* /hr=23.8x10° m*/sec

a) at x=10cm, R. = U.. x = 2XO'1_6 =8,372 & at x=20 cm, Re =16,744 ( Then Laminar Flow ),
] 23.8%10
For 3" order u(y) profile, from (sec 4.3.2.1) the thickness of the M.B.L. is:
5=40% i x=10em 8,=051cm & at x=20cm &, =072 cm

b) To calculate the mass flow which enters the M.B.L. from the free stream between x=10 cm and x
=20 cm , we take the difference between the mass flow in the B.L at these two x-positions. At any
x-position the mass flow in the B.Lﬁis given by:

3
mx=J.pu dy s u :i(lJ_l_(L]
Then 0 U . 2\ 0 2\ 6

. S3(y) 1(yY 5
=pU_ [ 2|-=|L|ay=2pU_5s
my =p mjz(a] 2(5] y=5pU.

0

Moo — Mo = é)C/).er(520 —0w) = g><l.09>< 2 0.72-051 x10° =2.86 gm/sec
8 8 100
¢) We can not use equation (19) for Air with Pr # <1, because x, =0, As an approximation, we can

use equation (11) with x,=0.0, therefore N._ =0.332 P,% Rex%
Then at x= 10 cm:

Ne,=0.332(0.7)4(8372)2 =27,  h =, K- 27X0024

X

From x=0 to x=10cm, h=2h =12.95 Kcallhrm®*C =1505 W/m’*C
The average heat flux in 1% 10cm, ¢=hA(T, —T.)=1295x0.1(75-25=6475 Kcal hrm=753 W/m

=6.47 Kcal | hrm*°C =752 W/m*°C

Then at x=20 cm

. =0.332(0.7)5(16744)> =38.184

Ky 38.184x0.024
x 0.2

From x=0 to x=20cm, h= 2h, =9.164 Kcall hrm*°C =10.632 W/m*°C

The average heat flux in 1* 20cm
q=hA(T, -T.)=9.164x0.2(75-25)=91.64 Kcal/hrm=106.571 W /m

4.3.2.2 Example For the case of dr <3 or Pr> 1 & for Laminar Flow and 2" Order profiles:

=4.582 Kcallhrm*°C=5.326 W/m*"C

hx :Nux

For thermal boundary layer with 2" order UL & ei profiles:

oo =

Prove that the energy equation (4.63) is reduced to: U i[éez - i5 g } 2a

dcl6° 30°° | se
Where, € = o and for this 2" order profile: & = 248 x
) JRe,
3
we get (s'3+4x.5'2£:£19,’1 = 83+£xali:i1°[1
dx 5 3 dx 5
. 3 ng . . 3 _%
The complementary equation &£ +—x P <=0 , Which has asolution & =ax
X
B} \ %
£ =ax % +%Pf1 ,where a = —%P,"lx;“ From B.C:(¢ =0at x=1x,),then & = %Pf‘ I—L&j
x
or 3 %
or e =9 __ 1 p% 1_[x_0j/4
s 1.0772 x
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-« %) 6 2k, 2K, (u.)?
ho= =0, where ¥ _ 2 71w _ 5| V. , then h = £ f Y
: T, - T 6., T —T 5 €6 548¢elvx

1

R4
h—0393KP( J[ XOJ]
D Xx

Ne =X N, 0393 PR {1—(’60

1

K ; b
- 1%
The average heat transfer coeff. h= 7 j h . dx=2h, )X= . (neglect x¢ in integration), then
0
_ % AR
K =0.78 K Pﬁ[U“j {1—(“} }
v L
also

By calculating the percent of error in case of 3" order profile, we get:

[
= /10772 /1.026 __ 4759  w.rt 3™ order case

1
%026
0.393-0.332 _

% errorin €

tot

% errorin  h,=——————=+1837% w.r.t 3" order case
0.332
% errorin  h= M =+18.37% w.r.t 3 order case
0.664
% errorin  Nu= % =+18.37 % w.r.t 3 order case
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Oral Exam Questions

Boundary Laver Flow Part(4)

1- Discuss all the differences you know between internal viscous flow and external flow (which can be
viscous or non-viscous). What is the role of the no-slip condition and viscous effects in each type?
What are the assumptions and equations that may be used in each type? Use sketches to explain your
discussion.

2- Define both the physical and mathematical meaning of the following:
I. the boundary layer region and the boundary layer thickness.
II. the stream lines and the stream function inside the boundary layer region.
III. the boundary layer displacement thickness.
IV. the effective body as seen by the real flow.

3- Discuss all the differences you know between the boundary layer over a real flat plate and the
boundary layer over a non-real flat plate. Define the critical Rynold’s number and the no-slip
condition in each type? What are the assumptions of dp/0x and Op/dy that may be used in each type?
Use sketches to explain your discussion.

4- Define both the physical and mathematical meaning of the following:
I. the boundary layer momentum thickness.
II. the critical Rynold’s number in the boundary layer.
III. the pressure distributions: 0p/0x and Op/0y inside and outside the boundary layer.
IV. the local skin friction coefficient, c;, and the integrated friction drag coefficient.

5- Discuss both the physical and mathematical relationship between the integrated drag skin friction
coefficient , Ct, and the boundary layer momentum thickness, 6.

6- Starting from Navier-Stock’s equations, write down and discuss the well known Prandtl’s two
differential equations for the boundary layer flow. Show all the assumptions used especially for Op/ox
and Op/0y inside and outside the boundary layer.

7- Using Blasius exact solution for a laminar boundary layer over a flat plate, prove that the boundary
layer thickness is: &/ x = 5.0 / Y Rey

8- Using Blasius exact solution for a laminar boundary layer over a flat plate, prove that the boundary
layer displacement thickness is: & /x = 1.72/ \ Re,

9- Using Blasius exact solution for a laminar boundary layer over a flat plate, prove that the boundary
layer momentum thickness is: 0 / x = 0.664 / \ Re,

10- Using Blasius exact solution for a laminar boundary layer over a flat plate, prove that the local
skin friction coefficient is: ¢f (X) = 0.664 / \ Rey

11- Using Blasius exact solution for a laminar boundary layer over a flat plate, prove that the the
stream lines must penetrate the boundary layer edge every where.

12- Define and discuss the use of the momentum integral approximate analysis to solve the boundary
layer flow over a flat plate.

13- Using the momentum integral method for a laminar B.L and assuming a second order
velocity profile, prove that the B.L thickness is: & / x = 5.48 / \ Re,
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14- Using the momentum integral method for a laminar B.L and assuming a second order
velocity profile, prove that the B.L displacement thickness is: 8"/ x =1.828/V Rey

15- Using the momentum integral method for a laminar B.LL and assuming a second order
velocity profile, prove that the B.L. momentum thickness is: 6 / x = 0.731/ \ Re,

16- Using the momentum integral method for a tripped turbulent B.L and assuming the
velocity profile, u/Uooz(y/S)” 7 and the wall shear stress, T,, =0.0225 onoz(v/SUoo)l/4 , prove that
the B.L thickness is: 8/ x = 0.37 / (Re, ) '°

17- Using the momentum integral method for a tripped turbulent B.L and assuming the
velocity profile, u/U,=(y/3)""" and the wall shear stress, t,, =0.0225 pU..>(v/8U,)"* | prove that
the B.L displacement thickness is: 6 /x = 0.0463 / ( Rey) 13

18- Using the momentum integral method for a tripped turbulent B.L and assuming the
velocity profile, u/U.=(y/3)""" and the wall shear stress, T,, =0.0225 pU,.*(v/dU,)"* , prove that
the B.L. momentum thickness is: 0 / x = 0.036 / ( Rey) 15

19- Using the momentum integral method for a laminar B.L. and assuming a velocity profile
as: u/U,.= sin(r y/ 2 §), prove that the B.L thickness is: & / x = 4.8 / V Re,

20- Using the momentum integral method for a laminar B.LL and assuming a velocity profile
as: u/U,= sin(n y/ 2 8), prove that the B.L displacement thickness is: 8 /x = 1.74 / Y Re,

21- Using the momentum integral method for a laminar B.LL and assuming a velocity profile
as: u/U,.= sin(r y/ 2 §), prove that the B.L momentum thickness is: 0 / x = 0.658 / \ Rey

22- Using Balsius’ soluation for laminar B.L over a flat plate, Compare between the laminar
B.L thickness, 0j.minar and the turbulent B.L thickness, dupulen if the laminar B.L is tripped at
the leading edge of the plate [use u/U.,=(y/5)" and t,, =0.0225 pU,*(v/dU.,)"* ]

23- Using Balsius’ soluation for laminar B.L over a flat plate, Compare between the laminar
B.L displacement thickness, 8*1aminar and the turbulent B.L displacement thickness, S*turbulent if
the laminar B.L is tripped at the leading edge of the plate [use u/U,=(y/8)""and t,, =0.0225
pU (VU™ ]

24- Using Balsius’ soluation for laminar B.L over a flat plate, Compare between the laminar
B.L momentum thickness, 0j,minr and the turbulent B.L. momentum thickness, Oypuen 1f the
laminar B.L is tripped at the leading edge of the plate [use u/U,=(y/8)"’and 1, =0.0225
pU (VU™ ]

25- Using the momentum integral method for a laminar B.L. and assuming (i) a second order
velocity profile and (ii) a third order velocity profile, compare the ratios of:

d(case 1) / d(case ii) , 8*(case i) / & (case ii) and O(case I/ O(case ii)

Dr. Mohsen Soliman -56 -



5. Blevins, R. D.. Applied Fluid Dynamics Handbook, Van Nos-
trand Reinhold, New York, 1984,

6. Hoerner. S. F.. Fiuid-Dynamic Drag. published by the au-
thor, Library of Congress No. 64,19666, 1965.

7. Happel. J.. Low Revnolds Number Hvdrodvramics, Prentice
Hall, Englewood Clifts, NI, 1065.

8. Van Dyke, M., An Album of Fluid Motion, Parabolic Press,
Stanford, Calif., 1982.

9. Thompson, P. A.. Compressible-Fliid Dvnamics, McGraw-
Hill. New York. 1972.

10. Zucrow, M. J., and Hoffman, J. D., Gas Dynamics, Vol. I,
Wiley, New York, 1976.

11. Clayton, B. R., and Bishop, R. E. D., Mechanics of Marine
Vehicles, Gulf Publishing Co., Houston, 1982,

12. CRC Handbook of Tables for Applied Engineering Science,
2nd Ed.. CRC Press, 1973.

13. Shevell, R. S.. Fundamentals of Flighr. 2nd Ed.. Prentice
Hall, Englewood Cliffs, NI, 1989,

14. Kuethe, A. M. and Chow, C. Y., Foundations of Aerody-
namics., Bases of Aerodvnamics Design, 4th Ed., Wiley, 1986.
15. Vogel. J.. Life in Moving Fluids, 2nd Ed.. Willard Grant
Press, Boston, 1994,

16. Kreider. J. F.. Principles of Fluid Mechanics, Allynand Ba-
con, Newton. Mass., 1985.

17. Dobrodzicki, G. A.. Flow Visualization in the National
Aeronautical Establishment’s Water Tunnel. National Re-
search Council of Canada, Aeronautical Report LR-557,
1972

18. White, E M., Fluid Mechanics, McGraw-Hill, New York,
1986.

19. Vennard, J. K., and Street. R. L.. Elementary Fluid Me-
chanics. 6th Ed.. Wiley, New York, 1982.

Review Problems for Part (4)

IR (Life/drag calculation) Determine the lift and drag
coefficients (based on frontal area) for the triangular two-
dimensional object shown in Fig P . 1R. Neglect shear forces.

(ANS: 0; 1.700

p=—5pU?

p= —(1.20)%,9.92

B FIGURE P .1R

2R (External flow character) A 0.23-m-diameter soc-
cer ball moves through the air with a speed of 10 m/s. Would
the flow around the ball be classified as low, moderate, or large
Reynolds number flow? Explain.

(ANS: Large Reynolds number flow)

3R (External flow character) A small 15-mm-long fish
swims with a speed of 20 mm/s. Would a boundary layer type
flow be developed along the sides of the fish? Explain.

(ANS: No)

4R (Boundary layer flow) Air flows over a flat plate of
length € = 2 ft such that the Reynolds number based on the
plate length is Re = 2 X 10°. Plot the boundary layer thick-
ness, 8, for0 = x = (.

200 Gross, A. C., Kyle, C. R., and Malewicki, D. I., The Aero-
dynamics of Human Powered Land Vehicles, Scientific Ameri-
can, Vol. 249, No. 6, 1983,

21. Abbott, I. H., and Von Doenhoff, A. E.. Theory of Wing
Sections, Dover Publications, New York, 1959.

22. MacReady, P. B., “Flight on 0.33 Horsepower: The Gos-
samer Condor.” Proc. AIAA 14th Annual Meeting (Paper No.
78-308), Washington, DC, 1978.

23. Goldstein. S., Modern Developments in Fluid Dyvnamics,
Oxtord Press, London, 1938,

24. Achenbach, E., Distribution of Local Pressure and Skin
Friction arcund a Circular Cylinder in Cross-Flow up to
Re = 5 X 10°, Journal of Fiuid Mecharics, Vol. 34, Pt. 4,
1968.

25, Inui, T.. Wave-Making Resistance of Ships, Transactions
of the Society of Naval Architects and Marine Engineers, Vol.
70. 1962,

26. Sovran, G., et al. (ed.), Aerodynamic Drag Mechanisms of
Bluff Bodies and Rcad Vehicles. Plenum Press, New York,
1978.

27. Abbott, I. H.. von Doenhoff, A. E. and Stivers. L. S., Sum-
mary of Airfoil Data, NACA Report No. 824, Langley Field,
Va., 1945,

28, Society of Automotive Engineers Report HSJ1566, “Aecro-
dynamic Flow Visualization Techniques and Procedures,” 1986.
29. Anderson, J. D., Fundamenials of Aerodyvnamics, 2nd Ed.,
McGraw-Hill. New York, 1991.

30. Hucho, W. H., Aecrodynamics of Read Vehicles, Butter-
worth — Heinemann, 1987.

31. Homsy, G. M., et. al., Muliimedia Fluid Mechanics CD-
ROM, Cambridge University Press, New York, 2000.

SR (Boundary layer flow) At a given location along a
flat plate the boundary layer thickness is § = 45 mm. At this
location, what would be the boundary layer thickness if it were
defined as the distance from the plate where the velocity is 97%
of the upstream velocity rather than the standard 9997 Assume
laminar flow.

(ANS: 38.5 mm)

6R (Friction drag) A laminar boundary layer formed on
one side of a plate of length ¢ produces a drag %. How much
must the plate be shortened if the drag on the new plate is to
be /47 Assume the upstream velocity remains the same. Ex-
plain your answer physically.
(ANS: €., = €/16)

7R (Momentum integral equation) As is indicated in
Table4 .2, the laminar boundary layer results obtained from the
momentum integral equation are relatively insensitive to the
shape of the assumed velocity profile. Consider the profile given
by u= Ufory > 8, and u = U{l — [(v — 8)/8*}'~ for
v = 6 as shown in Fig. P .7R. Note that this satisfies the con-
ditionsu = Oaty = Oand u = U at y = 8. However, show that
such a profile produces meaningless results when used with the
momentum integral equation. Explain.

(ANS)

w=1U

 ———

pr—-
i i e

1T

B FIGURE P .7R
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p =-5kN/m?
Problems:

| Assume that water flowing past the equilateral trian-
gular bar shown in Fig, P .1 produces the pressure distributions
indicated, Determine the lift and drag on the bar and the cor-
responding Iift and drag coefficients (based on frontal area), Ne-
glect shear forces, —

p=-0.25 pl/*
Linear distribution

T B FIGURE P .3
U/=51ft/s N The pressure distribution on a cylinder is approximated
— 0.1t by the two straight line segments shown in Fig. P 4. Deter-
p=05pt? mine the drag coefficient for the cylinder. Neglect shear forces.
£
L 2
b= longth = 4t zY
B FIGURE P .1
0
o2 Fluid flows past the two-dimensional bar shown in p

Fig. P 2. The pressures on the ends of the bar are as shown,
and the average shear stress on the top and bottom of the bar
15 Ty, Assume that the drag due to pressure is equal to the drag

. . h i ] 2
due to viscous effects. (a) Determine 7., in terms of the dy- U
namic pressure, pl/?/2. (b) Determine the drag coefficient for
this object. B FIGURE P .4

S Repeat Problem .1 if the object is a cone (made by ro-
p -—D.z[iptf*'] Fatir!g the equilateral n_‘iangle about the horizontal axis through
: its tip) rather than a triangular bar.

U
Wiclth = b \\l — ’; | .6 A 17-ft-long kayak moves with a speed of 5 ft/s (see
) ‘ f ‘ Video V .2). Would a boundary layer type flow be developed
along the sides of the boat? Explain.

WFIGURE B .2 J Typical values of the Reynolds number for various an-

imals moving through air or water are listed below. For which

cases is inertia of the fluid important? For which cases do vis-

3 The pressure distribution on the 1-m-diameter circu- cous effects dominate? For which cases would the flow be lam-
lar disk in Fig. P.3 is given in the table below. Determine the jnar; turbulent? Explain.

|’|.||'|'.|.}.'\ un th‘ "Iiskl L |

. Animal Speed Re
rim) p (kN/m’)  (a) large whale 10 m/s 300,000,000
0 4.34 (b) flying duck 20 m/s 300,000
0.05 4.28 (c) large dragonfly 7m/s 30,000
0.10 4.06 (d) invertebrate larva 1 mm/s 0.3
0.15 3.72 (e) bacterium 0.01 mm/s 0.00003
0.25 278 8 Estimate the Reynolds numbers associated with the
0.30 2.37 following objects moving through air: (a) a snow flake settling
0.35 [.89 to the ground, (b) a mosquito, (¢) the space shuttle, (d) you
0,40 [.41 walking.
045 0.74 9 Approximately how fast can the wind blow past a 0.25-
0.50 0.0 in.-diameter twig if viscous effects are to be of importance
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throughout the entire flow field (i.e., Re < 1)? Explain. Repeat
for a 0.004-in.-diameter hair and a 6-ft-diameter smokestack.

10 A viscous fluid flows past a flat plate such that the
boundary layer thickness at a distance 1.3 m from the leading
edge is 12 mm. Determine the boundary layer thickness at dis-
tances of 0.20, 2.0, and 20 m from the leading edge. Assume
laminar flow.

11 If the upstream velocity of the flow in Problem .10
is U = 1.5 m/s, determine the kinematic viscosity of the fluid.

A2 Water flows past a flat plate with an upstream veloc-
ity of U = 0.02 m/s. Determine the water velocity a distance
of 10 mm from the plate at distances of x = 1.5m and
x = 15 m from the leading edge.

A3 A Pitot tube connected to a water-filled U-tube
manometer is used to measure the total pressure within a bound-
ary layer. Based on the data given in the table below, determine
the boundary layer thickness, &, the displacement thickness, 5%,

and the momentum thickness, O.
|

vy (mm), fi (mm),
distance above plate manometer reading
0 0
2.1 10.6
4.3 21.1
6.4 25.6
10.7 325
15.0 36.9
19.3 394
23.6 40.5
26.8 41.0
203 41.0
32.7 41.0
1 ——

14 Because of the velocity deficit, U — u, in the bound-
ary layer, the streamlines for flow past a flat plate are not ex-
actly parallel to the plate. This deviation can be determined by
use of the displacement thickness, *. For air blowing past the
flat plate shown in Fig. P .14, plot the streamline A-B that

passes through the edge of the boundary layer (v = dpatx = () @ FIGURE P

at point B. That is, plot y = y(x) for streamline A-B. Assume
laminar boundary layer flow.

Streamline A-B

— ___/'f_IT-_--—-—--———I'_——____-!B_‘_-

P — Edge of boundary layer

! t=4m !
B FIGURE P .14

A5 Air enters a square duct through a 1-ft opening as is
shown in Fig. P .15. Because the boundary layer displacement
thickness increases in the direction of flow, it is necessary to
increase the cross-sectional size of the duct if a constant
U = 2 ft/s velocity is to be maintained outside the boundary

layer. Plot a graph of the duct size, d, as a function of x for
0 = x = 10 ft if Uis to remain constant. Assume laminar flow.

U=
2 ft/s
> llft d(x) > 2 ftis
'—n—)'
B FIGURE P .15
16 A smooth, flat plate of length { = 6 m and width

b =4m is placed in water with an upstream velocity of
U = 0.5 m/s. Determine the boundary layer thickness and the
wall shear stress at the center and the trailing edge of the plate.
Assume a laminar boundary layer.

A7 An atmospheric boundary layer is formed when the
wind blows over the earth’s surface. Typically, such velocity
profiles can be written as a power law: u = ay”, where the con-
stants @ and 1 depend on the roughness of the terrain. As is in-
dicated in Fig. P .17, typical values are n = 0.40 for urban ar-
eas, n = 0.28 for woodland or suburban areas, and n = 0.16
for flat open country (Ref. 23). (a) If the velocity is 20 ft/s at
the bottom of the sail on your boat (y = 4 ft), what is the ve-
locity at the top of the mast (y = 30 ft)? (b) If the average ve-
locity is 10 mph on the tenth floor of an urban building, what
is the average velocity on the sixtieth floor?

a0
A50 j_ / "~ }.,0.28
cwr ||
150 -
[ I —
0 [ | ?
A7

18 A 30-story office building (each story is 12 ft tall) is
built in a suburban industrial park. Plot the dynamic pressure,
pu*/2. as a function of elevation if the wind blows at hurricane
strength (75 mph) at the top of the building, Use the atmos-
pheric boundary layer information of Problem .17.

19 The typical shape of small cumulus clouds is as indi-
cated in Fig. P .19. Based on boundary layer ideas, explain why
it is clear that the wind is blowing from right to left as indicated.

.20 Show that by writing the velocity in terms of the simi-
larity variable 7 and the function f(n), the momentum equa-
tion for boundary layer flow on a flat plate (Eq. 4.9) can be writ-
ten as the ordinary differential equation given by Eq. 4.14.

21 Integrate the Blasius equation (Eq. 4.14) numerically
to determine the boundary layer profile for laminar flow past a
flat plate. Compare your results with those of Table 4.1.
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4%3_&_&&_5@

B FIGURE P

.19

.22 An airplane flies at a speed of 400 mph at an altitude
of 10,000 ft. If the boundary layers on the wing surfaces be-
have as those on a flat plate, estimate the extent of laminar
boundary layer flow along the wing. Assume a transitional
Reynolds number of Re,; = 5 X 10°. If the airplane maintains
its 400-mph speed but descends to sea level elevation, will the
portion of the wing covered by a laminar boundary layer
increase or decrease compared with its value at 10,000 ft?
Explain.

.23 If the boundary layer on the hood of your car be-
haves as one on a flat plate, estimate how far from the front
edge of the hood the boundary layer becomes turbulent. How
thick is the boundary layer at this location?

24 A laminar boundary layer velocity profile is approxi-
mated by u/U = [2 — (v/8)](v/8) for y =5, and u = U for
y > 6. (a) Show that this profile satisfies the appropriate bound-
ary conditions. (b) Use the momentum integral equation to de-
termine the boundary layer thickness, 6 = 6(x).

25 A laminar boundary layer velocity profile is approxi-
mated by the two straight-line segments indicated in Fig. P .25,
Use the momentum integral equation to determine the bound-
ary layer thickness, & = 8(x), and wall shear stress, 7, = 7,(x).
Compare these results with those in Table 4.2.

¥
g
|
|
|
|
|
3i2 |
| |
| |
| |
| |
!,
0 U0 U
3
B FIGURE P .25
26 An assumed, dimensionless laminar boundary layer

profile for flow past a flat plate is given in the table below. Use
the momentum integral equation to determine & = &(x).
Compare your result with the exact Blasius solution result (see
Table 4 .2).

y/é u/U
0 0
0.080 0.133
0.16 0.265
0.24 0.394
0.32 0.517
0.40 0.630
0.48 0.729
0.56 0.811
0.64 0.876
0.72 0.923
0.80 0.956
0.88 0.976
0.96 0.988
1.00 1.000

27 Forafluid of specific gravity SG = 0.86 flowing past
a flat plate with an upstream velocity of U = 5 m/s, the wall
shear stress on a flat plate was determined to be as indicated in
the table below. Use the momentum integral equation to deter-
mine the boundary layer momentum thickness, © = O(x). As-
sume O = 0 at the leading edge, x = 0.

x (m) 7, (N/m?)
0 —
0.2 13.4
0.4 9.25
0.6 7.68
0.8 6.51
1.0 5.89
1.2 6.57
1.4 6.75
1.6 6.23
1.8 5.92
2.0 5.26
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