
 MEP 567 Advanced PLC Applications Page 1 / # Dr. Mohsen Soliman, ACC Manager

 دبلوم تطبيقات التحكم ا�وتوماتيكى
فى نظم القوى الميكانيكية

MEP 567 Advanced PLC Applications

Client/Server type program. 1

st
 part (called Client program) is editor, compiler, simulator & program up-loader software

Cairo University

Faculty of Engineering

Mech. Power Department

 MEP 567 Advanced PLC Applications Page 2 / 9 Dr. Mohsen Soliman, ACC Manager

 MEP 567 Advanced PLC Applications Page 3 / 9 Dr. Mohsen Soliman, ACC Manager

Client/Server type program. 1

st
 part (called Client program) is editor, compiler, simulator & program up-loader software

 مباشرة PLCعلى النت ثم يمكن تنزله على LADلرفع برنامج serverللتخاطب مع (TLServer 3.x)غيرموجود والثانى البرنامج ا�ول لتعليم البرمجة

بعد ا>ط;ع على كافة قائمة محتويات البرنامج للتعرف على أھم ما يقوم به من وظائف ، سوف يكون تركيزنا فقط على الفصل السادس بصفة خاصة �نه
 موضوع التقرير(المطلوب عن البرنامج كجزء من أعمال الترم) وباقى الفصول من السابع للعاشريمكن كذلك دراستھا بصفة عامة للمساعدة فى كتابة التقرير.

 MEP 567 Advanced PLC Applications Page 4 / 9 Dr. Mohsen Soliman, ACC Manager

 Sequencer&Counter للفرق بين مفصلجزءشرح الفصل ھذا نھايةوفى helpيوجد فى

 MEP 567 Advanced PLC Applications Page 5 / 9 Dr. Mohsen Soliman, ACC Manager

 MEP 567 Advanced PLC Applications Page 6 / 9 Dr. Mohsen Soliman, ACC Manager

 MEP 567 Advanced PLC Applications Page 7 / 9 Dr. Mohsen Soliman, ACC Manager

 MEP 567 Advanced PLC Applications Page 8 / 9 Dr. Mohsen Soliman, ACC Manager

 Using i-TRiLOGI Sequencers جزء شرح إضافى
A sequencer is a highly convenient feature for programming machines or processes which operate in fixed sequences.

These machines operate in fixed, clearly distinguishable step-by-step order, starting from an initial step and progressing

to the final step and then restart from the initial step again. At any moment, there must be a "step counter" to keep track

of the current step number. Every step of the sequence must be accessible and can be used to trigger some action, such

as turning on a motor or solenoid valve, etc. As an example, a simple Pick-and-Place machine that can pick up a

component from point 'A' to point 'B' may operate as follow:

Step # Action Step # Action Step # Action

0 Wait for "Start" signal 3 Retract arm at point A 6 Open gripper

1 Forward arm at point A 4 Move arm to point B 7 Retract arm at point B

2 Close gripper 5 Forward arm at point B 8 Move arm to point A

i-TRiLOGI Version 5 supports eight sequencers of 32 steps each. Each sequencer uses one of the first eight counters

(Counter #1 to Counter #8) as its step counter. Any one or all of the first eight counters can be used as sequencers

"Seq1" to "Seq8".

To use a sequencer, first define the sequencer name in the Counter table by pressing the <F2> key and scroll to the

Counter Table. Any counter to be used as sequencer can only assume label names "Seq1" to "Seq8" corresponding to

the counter numbers. For e.g. if Sequencer #5 is to be used, Counter #5 must be defined as "Seq5". Next, enter the last

step number for the program sequence in the "Value" column of the table.

Construct a circuit that uses the special function "Advance Sequencer" [AVSeq]. The first time the execution condition

for the [AVseq] function goes from OFF to ON, the designated sequencer will go from inactive to step 1. Subsequent

change of the sequencer's execution condition from OFF to ON will advance (increment) the sequencer by one step.

This operation is actually identical to the [UPctr] instruction.

The upper limit of the step counter is determined by the "Set Value" (SV) defined in the Counter table. When the SV is

reached, the next advancement of sequencer will cause it to overflow to step 0. At this time, the sequencer's contact will

turn ON until the next increment of the sequencer. This contact can be used to indicate that a program has completed

one cycle and is ready for a new cycle.

Accessing individual steps of the sequencer is extremely simple when programming with i-TRiLOGI. Simply create a

"contact" (NC or NO) in ladder edit mode. When the I/O window pops up for you to pick a label, scroll to the "Special

Bits" table as follow:

The "Special Bits" table is located after the "Counters" table and before the "Inputs" table. Then click on the "SeqN:x"

item to insert a sequencer bit. You will be prompted to select a sequencer from a pop-up menu. Choose the desired

sequencer (1 to 8) and another dialog box will open up for you to enter the specific step number for this sequencer.

Each step of the sequencer can be programmed as a contact on the ladder diagram as "SeqN:X" where N = Sequencers

1 to 8. X = Steps # 0 - 31.

e.g. Seq2:4 = Step #4 of Sequencer 2.

Seq5:25 = Step #25 of Sequencer 5.

Although a sequencer may go beyond Step 31 if you define a larger SV for it, only the first 32 steps can be used as

contacts to the ladder logic. Hence it is necessary to limit the maximum step number to not more than 31.

 MEP 567 Advanced PLC Applications Page 9 / 9 Dr. Mohsen Soliman, ACC Manager

Special Sequencer Functions
Quite a few of the ladder logic special functions are related to the use of the sequencer. These are described below:

Advance Sequencer - [AVseq]

Increment the sequencer's step counter by one until it overflows. This function is the identical to (and hence

interchangeable with) the [UpCtr] function.

Resetting Sequencer - [RSseq]

The sequencer can also be reset to become inactive by the [RSseq] function at any time. Note that a sequencer that is

inactive is not the same as sequencer at Step 0, as the former does not activate the SeqN:0 contact. To set the sequencer

to step 0, use the [StepN] function described next.

Setting Sequencer to Step N - [StepN]
In certain applications it may be more convenient to be able to set the sequencer to a known step asynchronously. This

function will set the selected sequencer to step #N, regardless of its current step number or logic state. The ability to

jump steps is a very powerful feature of the sequencers.

Reversing a Sequencer
Although not available as a unique special function, a Sequencer may be stepped backward (by decrementing its step-

counter) using the [DNctr] command on the counter that has been defined as a sequencer. This is useful for creating a

reversible sequencer or for replacing a reversible "drum" controller.

 Other Applications
a. Driving Stepper Motor
A sequencer may be used to drive a stepper motor directly. A two-phase stepper motor can be driven by four transistor

outputs of the controller directly (for small motors with phase current < 0.5A) or via solid-state relays. The stepper

motor can be driven using a sequencer that cycles through Step#0 to Step#3 (full-step mode) or Step#0 through Step#7

(half-step mode). Each step of the sequencer is used to energize different phases of the stepper motor. A clock source is

needed to drive the stepper motor through its stepping sequence. The stepping rate is determined by the frequency

(which is equal to 1/period) of the clock source.

Clock pulses with periods in multiples of 0.01 second can be generated easily using the "Clk:.01s" bit and an [Upctr]

function. For e.g., to generate a clock source of period = 0.05s, use "Clk.01s" to feed to an [Upctr] counter with Set

Value = 4. The counter's contact (completion flag) will be turned ON once every 5 counts (0,1,2,3,4), which is

equivalent to a 0.05 sec. clock source.
b. Replacing a Drum Controller

A drum controller can be replaced easily by a sequencer if the timing of the drum's outputs can be divided into discrete

steps. Assuming a drum controls two outputs with

the timing diagram shown in the following figure:

This can be replaced by an 8-step sequencer. Step 1

(e.g "Seq1:1") turns ON and latch Output A using

[Latch] function, Step 2 turns ON and latch Output

B, Step 4 turns OFF Output A using the [Clear]

function, and Step 6 turns OFF Output B. All other

steps (3,5,7,0) have no connection.

 Program Example
Assume that we wish to create a running light pattern which turns on the LED of Outputs 1 to 4 one at a time every

second in the following order: LED1, LED2, LED3, LED4, LED4, LED3, LED2, LED1, all LED OFF and then restart

the cycle again. This can be easily accomplished with

the program shown in Figure 6.9.

The 1.0s clock pulse bit will advance (increment)

Sequencer #2 by one step every second. Sequencer 2

should be defined with Set Value = 8. Each step of the

sequencer is used as a normally open contact to turn

on the desired LED for the step. A "Stop" input resets

the sequencer asynchronously. When the sequencer

counts to eight, it will become Step 0. Since none of

the LED is turned ON by Step 0, all LEDs will be

OFF.

