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‘Transient and Steady—State’#

Response Analyses

BG-—1 INTRODJUCTION)]

In early chapters it was stated that the first step in analvzing a control system was to de-
rive a mathematical model of the system. Once such a model is obtained. various meth-
ods are available for the analwvsis of syvstem performance.

In practice. the input signal to a control system is not known ahead of time but is
random in nature. and the instantanceous input cannot be expressed analvtically. Only in
some special cases is the input signal known in advance and expressible analvtically or
by curves. such as in the case of the automatic control of cutting tools.

In analvzing and designing control svstems. we must have a basis of comparison of
performance of various control systems. This basis maywv be set up by specifyving particular
test input signals and by comparing the responses of various svstems to these input signals.

Manwv design criteria are based on the response to such test signals or on the re-
sponse of systems to changes in initial conditions (without any test signals). The use of
test signals can be justified because of a correlation existing between the response char-
acteristics of a system to a tyvpical test input signal and the capability of the system to cope
with actual input signals.

[ Typical Test Signals.] The commonly used test input signals are step functions,
ramp functions. acceleration functions. impulse functions. sinusoidal functions. and white
noise. In this chapter we use test signals such as step. ramp. acceleration and impulse
signals. With these test signals. mathematical and experimental analyses of control sys-
tems can be carried out easily, since the signals are very simple functions of time.

Which of these tyvpical input signals to use for analvzing svstem characteristics may
be determined by the form of the input that the system will be subjected to most
frequently under normal operation. If the inputs to a control system are gradually
changing functions of time. then a ramp function of time may be a good test signal. Sim-
ilarly. if a system is subjected to sudden disturbances, a step function of time may be a
good test signal: and for a system subjected to shock inputs. an impulse function may be
best. Once a control system is designed on the basis of test signals, the performance of
the swvstem in response to actual inputs is generally satisfactory. The use of such test
signals enables one to compare the performance of many systems on the same basis.

(Transient Response and Steady-State Response.] The time response of a
control system consists of two parts: the transient response and the steady-state response.
By transient response. we mean that which goes from the initial state to the final state.
Byv steady-state response. we meamn the manner in which the system output behaves as
r approaches infinity. Thus the system response c(7) may be written as

c(r) = c () + (1)
where the first term on the right-hand side of the equation is the transient response and
the second term is the steady-state response.

(Absolute Stability. Relative Stability. and Steady-State Error.] In designing a
control system. we must be able to predict the dvnamic behavior of the system from a
knowledge of the components. The most important characteristic of the dynamic
behavior of a control system is absolute stabilitwy that is. whether the system is stable or
unstable. A control system is in equilibrium if. in the absence of any disturbance or input.
the output stavs in the same state. A linear time-invariant control system is stable if the
output eventually comes back to its equilibrium state when the system is subjected to
an initial condition. A linear time-invariant control system is critically stable if oscilla-
tions of the output continue forewver. It is unstable if the output diverges without bound
from its equilibrium state when the svstem is subjected to an initial condition. Actually.,
the outrput of a phwvsical syvstem may increase to a certain extent but maywv be limited bw
mechanical “"stops.”” or the system may break down or become nonlinear after the out-
Pput exceeds a certain magnitude so that the linear differential equations no longer applw.

Important syvstem behavior (other than absolute stability) to which we must give
careful consideration includes relative stability and steady-state error. Since a phvsical
control system involves energy storage. the outrput of the system. when subjected to an
input, cannot follow the input immediately but exhibits a transient response before a
steady state can be reached. The transient response of a practical control system often
exhibits damped oscillations before reaching a steady state. If the output of a system at
steady state does not exactly agree with the input, the system is said to have steadw-
state error. This error is indicative of the accuracy of the syvstem. In analyvzing a control
systerm. we must examine transient-response behawvior and steadwv-state behavior.

[ Outline of the Chapter.] This chapter is concerned with system responses to
aperiodic signals (such as step., ramp. acceleration, and impulse functions of time). The
outline of the chapter is as follows: Section 5—1 has presented introductory material for
the chapter. Section 5—2 treats the response of first-order systems to aperiodic inputs.
Section 5—3 deals with the transient response of the second-order systems. Detailed
analyvses of the step response., ramp response., and impulse response of the second-order
swstemms are presented. Section 5—4 discusses the transient-response analwsis of higher-
order systems. Section 5—5 gives an introduction to the WIATIL AB approach to the solution
of transient-response problems. Section 5—6 gives an example of a transient-response
problem solved with WM ATI AB. Section 5—7 presents Routh’s stability criterion. Section
5—8 discusses effects of integral and derivative control actions on system performance.
Finally, Section 5—9 treats steady-state errors in unityv-feedback control svstems.

=2 FIRST-ORDER SYSTEMS]
Consider the first-order system showmn in Figure 5—1(a). Phyvsically., this systerm may
represent an RO circuit, thermal system. or the like. A simplified block diagram is shown
in Figure S—1(b). The irlpu(t?—(()sL)ltput reiatiorLship is given bw

R(s) T + 1 -1
In the following. we shall analyze the system responses to such inputs as the unit-step.
unit-ramp. and unit-impulse functions. The initial conditions are assumed to be zero.

Note that all systems having the same transfer function will exhibit the same output
in response to the same input. For any given physical system. the mathematical response
can be given a phyvsical interpretation.
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[dnit-Step Response of First-Order Systems)] Since the Laplace transform of
the unit-step function is 1 /5. substituting R(s) = 1 /s into Eqguation (5—1). we obtain
_ 1 1
<) = s = 1 s

Expanding C(s)into partial fractions gives C(S):%i TS?; T :%75'4#(11/]?) (5—2)

Taking the inverse Laplace transform of Equation (5—2). we obtain

c(r) = 1 — e /7, forsr = O (5—-3)
Equation (5—3) states that initially the output () is zero and finally it becomes unity.
One important characteristic of such an exponential response curve (7)) is that atr = T~
the value of ¢(r) is 0.632, or the response c(r) has reached 63.29¢ of its total change. This
may be easily seen by substituting r = 7 in c(r). That is. (T — 1 — e ' — 0.632
SONY / Slope = % c(hy=1— e~ ')

™

1 | A

R”)EEQEW 1 [Cs) R(s) I C(s) N Y =
Ts ) Ts+ 1 . B e
b
(@) *— ) 0.632

Figure 5-1 (a) Block diagram of a first-order
system; (b) simplified block diagram. Figure 5-2
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Note that the smaller the time constant 7. the faster the system response. Another
important characteristic of the exponential response curve is that the slope of the tangent

line atr =— 0Ois 1/7 . since gt |t70 — %efr/'r | —o = 1? (5—)

The output would reach the final value at r = 7 if it maintained its initial speed of
response. From Equation (5—4) we see that the slope of the response curve c(¢) decreases
monotonically from 1/7 atr = O to zero atzr = oo.

The exponential response curve c(r) given by Equation (5—3) is shown in Figure 5—2.
In one time constant, the exponential response curve has gone from O to 63.29% of the final
value. In two time constants, the response reaches 86.59% of the final value. Atr = 37 .47
and 57 . the response reaches 959, 98.29%. and 99.39%. respectively. of the final value. Thus.
for r = 47, the response remains within 29% of the final value. As seen from Equation
(5—3). the steady state is reached mathematically only after an infinite time. In practice.
howewver. a reasonable estimate of the response time is the length of time the response
curve needs to reach and stay within the 295 line of the final value, or four time constants.

| nit-Ramp Response of First-Order Systems.| Since the Laplace transform of
the unit-ramp function is 1 /5%, we obtain the outpu%’l of the system of Figure S5—1(a) as
CCs) = 75 + 1 = S
Expanding C(s5) into partial fractions gives C(s) = S—]é — TT - ﬁ (5—5)
Taking the inverse Laplace transform of Equation (5—5). we obtain
c(e)y = ¢ — T + Te /7, forr = 0O (5—6)
The error signal e(r) is then e(t) = () — c(£)= T(1 — e /1)
)y 4 + ¢ C(? 4
<) Steady- T
B T state error
T e
are ) =t Figure 5—4
Figure 5-3 N Unit-impulse
Unit-ramp response of
() )
responseof | the system
the system shown in
shown in B Figure 5—1(a)
Figure 5—1(a) -~ =
e ] ] ]
& YA 4 . A 0 T T 37T aT r

A s r approaches infinity, e 7 approaches zero, and thus the error signal e(r) approaches
T or e(oo) = T
The unit-ramp input and the svstem output are shown in Figure 5—3. The error in
following the unit-ramp input is equal to 7 for sufficiently large r. The smaller the time
constant 7. the smaller the steadv-state error in following the ramp input.

| dnit-Impulse Response of First-Order Systems.] For the unit-impulse input,
R({(s) = 1 and the output of the system of Figurle 5—1(a) can be obtained as

C(s) = o « 1

The inverse Laplace transform of Equation (5—7) gives <c(r) :% e T, for¢t = O (5—8)
The response curve given by Equation (53—8) is shown in Figure S— .

S—=7)

AN ITmportant Property of Linear Time-Invariant Systems.]| In the analvsis
abowve, it has been shown that for the unit-ramyp input the output o(r) is
c(£) = ¢ — T + Te /T, forr = O [See Equation (5—6).]
For the unit-step input. which is the derivative of unit-ramp input. the output c(r) is
ey = 1 — e 777 for zr = 0O ISee Fauation (S5—3)_1
Finally. for the unit-impulse input. which is the derivative of unit-step input. the output
c(r) is c(z) = %eft/T, forz = O [See Equation (5—8).]

Comparing the svstem responses to these three inputs clearly indicates that the response
to the derivative of an input signal can be obtained by differentiating the response of the
swvstem to the original signal. It can also be seen that the response to the integral of the
original signal can be obtained by integrating the response of the svystem to the original
signal and by determining the integration constant from the zero-output initial condi-
tion. This is a property of linear time-invariant systems. L inear time-varyving syvstems and
nonlinear syvstems do not possess this property.
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G323 SECOND-ORDER SYSTEMS ]

In this section. we shall obtain the response of a typical second-order control systemrm to
a step input. ramp input. and impulse input. Here we consider a servo systerm as an
example of a second-order svstermmn.

Saervo System.| I'he servo system shown in Figure 5S—S(a) consists of a proportional

controller and load elements (inertia and wviscous-friction elements). Suppose that we
wish to control the output position ¢ in accordance with the input position .

The eguation for the load elements is J& + Bcec — T
where 7 is the torque produced bw the proportional controller whose gain is K. Bw
taking I aplace transforms of both sides of this last egquation. assuming the zero initial
conditions. we obtain T sEC(s) + BsC(s) T (s) (s) 1
So the transfer function between C(s5) and 7T (s) is T (s) = s(Ss + B)
By using this transfer function. Figure 5—5S (a) can be redrawmn as in Figure 5S—S(b). which
can be modified to that shown in Figure 5—S(c). The closed-loop transfer function is then
obtained as < (s) i -

R(s) T2 + Bs + K 52 4+ (B/J)s + (K /J)

Such a swstem where the closed-loop transfer function possesses two poles is called a
second-order system. (Some second-order systerms may involve one or two Zzeros.)

1 C(s)  R(s) K C(s) . R(S) E(S) >
5Us + B) - s+ B) Figure 5-6 _,@_, (uz,,
© 4 Second-order 5(5 + 2{wy)

system.

C(s)

Figure 5-5 (a) Servo system: (b) block diagram: (c) simplified block diagram.

(Step Response of Second-Order System. ] The closed-loop transfer function of
the system shown in Figure 5—5(c) is (s Vo

R(s)  Js52 + Bs + K
which can be rewritten as < (s) =T

O s 2 (&)Y Sl V(&) 5]

The closed-loop poles are complex conjugates if B2 — 47K — O and thewy are real if

(5—9)

2z A7 K = O.In the transient-responsc analvsis, it is convenient to write
< =3 V= _
T . T = 2& e, — 2o

where o is called the arrernticariort: o, . thhe wrndarmped rnarieral fregeuericy: and &.the darrep -

irtg rarico of the system. The damping ratio £ is the ratio of the actual damping B to the
critical damping B, — 2 N\J K or & =

= S = S
B 2SR
In terms of £ and «,,. the svystem shown in Figure 5—5(c) can be modified to that shown

in Figure 5—6. and the closed-loop transfer function < (s5) /R({(s) given by Equation (5—9)
can be written < (s) =

— _ Vg _ (S5—10)
R(s) 57 + 28,5 + oo
This form is called the srartddcrd formm: of the second-order system.

The dyvnamic behavior of the second-order system can then be described in terms of
two parameters & and w,,. If 0 <= & << 1. the closed-loop poles are complex conjugates
and lie in the left-half 5 plane. The system is then called underdamped. and the tran-
sient response is oscillatory. If £ = O, the transient response does not die out. If £ = 1.
the svstem is called critically damped. Overdamped systems correspond to & = 1.

We shall now solve for the response of the system shown in Figure 5—6 to a unit-step
input. We shall consider three different cases: the underdamped (0O < ¢ =< 1). critically

damped (& = 1).and overdamped (& = 1) cases.
(1) Underdamped case (O << & =< 1): In tzhis case, C(s)/R(s) can be written
C(s) _ w?,
R(S) (S —+ gwn =I5 jwd)(s == ‘_:Twrx - f‘wd)
where awy, = w,, V1 — &2. The frequency w, is called the darmiped rnarueral freguernncy. For

a unit-step input. C(s) can be written

>
(L9 )] -
s = S5

<(s) (32 + 2Zcw,, s + a)i)s C 115

The inverse Laplace transform of Equation (5—11) can be obtained easily if C(s5) is writ-
ten in the following form:

s — 1 s + 2Zew,, _ 1 St ég)n _ é’w,,z
5 52 + 2w, s + w2 & (s + &ew,,)” + @3 (s + &ew, )" + w3
Referring to the Laplace transform table in A ppendix A . it can be shown that
5 = e i cp—1 “ra el
=g 1[ S 2 ] = e ¢ COS w I 551 = e =0 SIN oyl
(s —+ .ﬁ,’(un)z + w3 < (5' -+ gwn) + wgy

Hence the inverse Laplace transform of Equation (5—11) is obtained as
FAHC(s)] = e(z) — 1 — e_g“’"‘( COS wyl + %Sirlwdf)
e Lwnt 1 — §2 V1l — & B
c(£)= 1 — ﬁsin(wdt + tan ! —{;,), forr = O (5—12)
From Equation (5—12). it can be seen that the frequency of transient oscillation is the
damped natural frequency w,; and thus varies with the damping ratio . The error signal
for this system is the difference between the input and output and is

e(r) = r(z) — c(t) = efgw"’(cosa)dt -+ ﬁsinwdt‘), forer = O
This error signal exhibits a damped sinusoidal oscillation. At steady state. or at r
no error exists between the input and output.

If the damping ratio & is equal to zero. the response becomes undamped and
oscillations continue indefinitely. The response c(r) for the zero damping case may be
obtained by substituting & 0O in Equation (5—12), yvielding

c(r) = 1 COS ar,, T, forr = O (5—13)
Thus, from Equation (5—13), we see that w, represents the undamped natural frequen-
cy of the system. That is. e,, is that frequency at which the system output would oscillate
if the damping were decreased to zero. If the linear system has any amount of damping.
the undamped natural frequency cannot be observed experimentally. The frequency
that may be observed is the damped natural frequency w,. which is equal to w,,” T — &=
This frequency is always lower than the undamped natural frequency. An increase in &

would reduce the damped natural frequency w,. If & is increased bevond unity, the
response becomes overdamped and will not oscillate.
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(2) Critically damped case (£ = 1): If the two poles of C'(s5) /R (s) are equal. the system
is said to be a critically damped one. w2

For a unit-step input. R(s) = 1/s and C(s5) can be written C(s) = m (5—14)
w’?
The inverse Laplace transform of Equation (5—14) may be found as

c(r) = 1 — e (1 + w,7), forr = O (5—15)
This result can also be obtained by letting & approach unity in Equation (5—12) and by
using the following limit: ) sin e, ; sines,, N1 — &27¢
im ——F— = lim 2 = w,, I
E—>1 - 1 — & &1 1 — &2
(3) [Overdamped case (& = 1):] In this case, the two poles of C(s) /R(s) are negative
real and unequal. For a unit-step inptélt.. R(s) = 1/5s and C(s) can be written
C(s) = == (5—-16)

(s + Zew,, + w, V& — 1)s + Lew,, — @, V22 — 1)s

The inverse Laplace transform of Equation (5—16) is

c(z)=1+ 1 e E N E T D 1

2R A E N E L) PN T2 (N )
c(r) =1 + = i forzr = O s T B
2N =10 = = ) -
where s, = (& + V<& — 1w, and s, = (& — V&7 — 1)w,,. Thus. the response c(7)
includes two decayving exponential terms.

When £ is appreciably greater than unity. one of the two decaying exponentials
decreases miuch faster than the other, so the faster-decaving exponential term (which
corresponds to a smaller time constant) may be neglected. That is, if —s5 1s located very
much closer to the jw axis than —s, (Which means |.5‘2| == |.S'1|). then for an approximate
solution we may neglect —s, . This is permissible because the effect of —s, on the response
is much smaller than that of —s55. since the term involving 5, in Equation (5—17) decavs
much faster than the term involving s,. Once the faster-decaving exponential term has
disappeared. the response is similar to that of a first-order system. and C(s5) /R(s) may
be approximated by C(s) Fdr wnm 5o

R(S) s + L, — wrn\/é—z S s s

This approximate form is a direct consequence of the fact that the initial values and
final values of both the original C(s5)/R(s) and the approximate one agree with each
other. With approximate transfer function C(s)/R(s). the unit-step response can be
obtained as - - Eawr, — w NEZ — 1

(s) = (_5. + L, — wn\/é'z = - 1)3
The time response c(z) is then ¢(z) = 1 — gV 1w,r, for r =
This gives an approximate unit-step response when one of the poles of C(s5) /R(s) can
be neglected.

e &V —Dw,z

1.8 < =
S 0.1
1.6 f— 0.5 T LN 0.2 -
= =23
Figure 57 -
T 1.2 foreas
Unit-step response
curves of the syvstem 1.0
shown in Ficgure S5S—6.
= 0.8
o6 b— s T
O 4 B
0.2 g
i
(] | = 3 = 3 s = o 10 11 122
Cedg,

A family of unit-step response curves c(r) with various values of &£ is shown in Fig-
ure 5—7., where the abscissa is the dimensionless variable w,7. The curves are functions
only of &. These curves are obtained from Equations (5—12). (5—15). and (5—17). The
swstem described by these equations was initially at rest.

Note that two second-order systems having the same £ but different w,, will exhibit
the same overshoot and the same oscillatory pattern. Such systems are said to have the
same relative stability.

From Figure 5—7.we see that an underdamped system with £ between 0.5 and 0.8 gets
close to the final value more rapidly than a critically damped or overdamped system.
AAmong the systems responding without oscillation. a critically damped system exhibits
the fastest response. An overdamped system is always sluggish in responding to any inputs.

It is important to note that. for second-order systems whose closed-loop transftfer
functions are different from that given by Equation (5—10). the step-response curves
may look quite different from those shown in Figure 5—7.

(Definitions of Transient-Response Specifications.] Frequently. the perform-
ance characteristics of a control system are specified in terms of the transient response to
a unit-step input. since it is easy to generate and is sufficiently drastic. (If the response to
a step input is known, it is mathematically possible to compute the response to any input.)

The transient response of a system to a unit-step input depends on the initial condi-
tions. For convenience in comparing transient responses of various systems, it is a com-
mon practice to use the standard initial condition that the system is at rest initially with
the output and all time derivatives thereof zero. Then the response characteristics of
many systems can be easily compared.

The transient response of a practical control system often exhibits damped oscilla-
tions before reaching steady state. In specifyving the transient-response characteristics of
a control system to a unit-step input. it is common to specify the following:

1. Delay time., 74 3. Peak time. r, 5. Settling time.
2. Rise time. 7, 4. Maximum overshoot, A,
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These specifications are defined in what follows and are shown graphically in Figure 5—8.

1. Delay time. 7;: The delawy time is the time required for the response to reach half
the final value the very first time.

2. Rise time. r,: The rise time is the time required for the response to rise from 109%
to 909, 590 to 95%. or 0% to 100%% of its final value. For underdamped second-
order systems. the 09% to 1009 rise time is normally used. For overdamped systems.
the 10%% to 909 rise time is commonly used.

3. Peak time.7,: The peak time is the time required for the response to reach the first
peak of the overshoot.

4. Maximum (percent) overshoot, M ,: The maximum overshoot is the maximum
peak value of the response curve measured from unity. If the final steady-state
value of the response differs from unity, then it is common to use the maximum
percent overshoot. It is defined bw

Maximum percent overshoot =

The amount of the maximum (percent) overshoot directly indicates the relative
stability of the system.

5. Settling time, 7;: The settling time is the time required for the response curve to
reach and stay within a range about the final value of size specified by absolute per-
centage of the final value (usually 296 or 5%9%). The settling time is related to the
largest time constant of the control system. Which percentage error criterion to use
may be determined from the objectives of the system design in question.

The time-domain specifications just given are guite important. since most control
systems are time-domain systems: that is, they must exhibit acceptable time responses.
(This means that, the control system must be modified until the transient response is

satisfactory.)
c(t) A Allowable tolerance
o] /N Sy 4_§j;p§§
\-—.—#:-__$ ______________ ﬁ_— 0-02
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Note that not all these specifications necessarily apply to any given case. For exam-
ple. for an overdamped system. the terms peak time and maximum overshoot do not
apply. (For systems that vield steadvy-state errors for step inputs, this error must be kept
within a specified percentage level. Detailed discussions of steady-state errors are post-
poned until Section 5—-8.)

(A Few Comments on Transient-Response Specifications.] Except for certain
applications where oscillations cannot be tolerated., it is desirable that the transient re-
sponse be sufficiently fast and be sufficiently damped. Thus. for a desirable transient re-
sponse of a second-order system. the damping ratio must be between 0.4 and 0.8. Small
values of {(that is, & << 0.4) vield excessive overshoot in the transient response. and a
system with a large value of {(that is. £ = 0.8) responds sluggishly.

We shall see later that the maximum overshoot and the rise time conflict with each other.
In other words, both the maximum overshoot and the rise time cannot be made smaller
simultaneously. IT one of them is made smaller. the other necessarily becomes larger.

( Second-Order Systems and Transient-Response Specifications.] In the fol-
lowing., we shall obtain the rise time, peak time, maximum overshoot, and settling time
of the second-order system given by Equation (5—10). These values will be obtained in
terms of £ and w,,. The syvstem is assumed to be underdamped.

[Rise tirnner,]] Referring to Equation (5—12). we obtain the rise time ¢, by letting ¢(7,) = 1.
C(Ir) =1 =1 — e—éw”t,( COS wyl, —+ ﬁsin mdr,) (5—18)
Since e ¢+ = 0, we obtain from Equation (5-18) the following equation:
COSs wyf, + ﬁsin wyt, = 0O Since w,, 1 — &7 = wgand {w,, = o.we have
N1—&7 w . . - _ 1 fewg . T—B =
tan wyf, = — Tg E— ?ﬂ' Thus, the rise time f, is =g, tan (_g; )— g (5—19)
where angle B is defined in Figure 5-9. Clearly. for a small value of ¢, . w,; must be large.
Joor g
S
Figure 59 @,/ 1 T_-Z2 i “n
Definition of | ,(Te
the angle 8. 0 o
—h-k‘ f(u,, |-——
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(Pealk tirne 1,:] Referring to Equation (5—12). we may obtain the peak time by differen-
tiating (7)) with respect to time and letting this derivative equal zero. Since

% — §wne*§"’"‘(cos oG —+ ﬁsin wdt) 4 e_:w,,-'(md Sin ey — f%dgzcos mdr)
and the cosine terms in this last equation cancel each other. dc/dr. evaluated atr = 1.
can be simplified to 7? |r=r,, = (sin wyt,) ﬁ e fenly — O

This last equation vields the equation: sinwgf, = 0O or wyt, — O, 77, 297, 375, ...
Since peak time corresponds to first peak overshoot, e 7, —77. Hence 7, =wld (5—20)

The peak time 7, corresponds to one-half cycle of the frequency of damped oscillation.

|Maxirriurn overshoor M, :| The maximum overshoot occurs at the peak time or at

t — t, — 7T/ /wg- Assuming that the final value of the output is unity, M , is obtained from
Equation (5—12) as z
Mp =C(IP) — 1 = —eié-“"-r(”'/""d)(COS T +\/17_—§2 sin ’?T): e‘(a'/ﬂ-'d)”-_ — 64(5; V1 — &% (5—21)

The maximum percent overshoot is e (o/od™ s 100%.
If the final value c(oc) of the output is not unity. then we need to use the following

cquation: A — c(1,) — c(oo)
L c(ow)
|Seetlinng rirne 7,:] For an underdamped second-order system. the transient response is
obtained from Equation (5—12) as _ . T =
T ey - — —
c(t):1—€—51n(wdr—l—tanl—é—), forr = 0O
1 — & &
(7 4
1+ 1
M1 g2

Figure S—10

Pair of envelope

curves for the unit- 1
sStep response curve

of the system shown

in Figure 5—06.
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The curves 1 + (e %@/ 1 — £2) are the envelope curves of the transient response to

a unit-step input. The response curve c(#) always remains within a pair of the envelope
curves. as shown in Figure 5—10. The time constant of these envelope curves is 1/dw,,.

The speed of decay of the transient response depends on the value of the time constant
1/&ew,,. For a given w,,. the settling time 7; is a function of the damping ratio . From
Figure 5—7.we see that for the same w,, and for a range of £ between O and 1 the settling time
r; for a very lightly damped system is larger than that for a properly damped system. For an
overdamped system. the settling time 7, becomes large because of the sluggish response.

The settling time corresponding to a 2% or =5% tolerance band may be measured
in terms of the time constant 7' = 1/{w, from the curves of Figure 5-7 for different
values of ¢. The results are shown in Figure 5S—11. For 0O << & << 0.9.if the 290 criterion is
used. r, is approximately four times the time constant of the system. If the 59 criterion
is used. then 7, is approximately three times the time constant. WNote that the settling
time reaches a minimum value around & = 0.76 (for the 29 criterion) or & = 0.68 (for
the 59 criterion) and then increases almost linearly for large walues of £.
The discontinuities in the curves of Figure 5—11 arise because an infinitesimal change
in the value of & can cause a finite change in the settling time.

For convenience in comparing the responses of systems. we commonly define the
settling time 7; to be

oy — AT — % = é',fcl-u,, (2% criterion) (5-22) or ¢, = 37T = % = (5% criterion) (5-23)

Note that the settling time is inversely proportional to the product of the damping
ratio and the undamped natural frequency of the system. Since the value of £ is usually
determined from the requirement of permissible maximum overshoot, the settling time

S oz, 100
0[} H H H H
C(s) _ (u,%
BO = Ni— 1 R(s) 82+ 25lw,5 + w2
. 70 M, : Maximum overshoot
o 60
& 3T a1, 50
‘E— 40 ............................................................
vl 3[} .........................................................................
Figure 5-11 2T : : 20 =i e NG
Settling time 7 5% Tolerance band : \
b : 10 =N
versus { curves. i : \---.._.________‘_
- : , : 0 0.5 & 1.0
03 04 05 06,07 08 09 10 Figure 5—12 A{, versus & curve.
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is determined primarily by the undamped natural frequency w,,. This means that the
duration of the transient period may be varied., without changing the maximum over-
shoot. by adjusting the undamped natural frequency w,,.

From the preceding analysis. it is evident that for rapid response w,, must be large. To limit
the maximum overshoot A/, and to make the settling time small. the damping ratio £ should
not be too small. The relationship between the maximum percent overshoot M, and the
damping ratio ¢ is presented in Figure 5-12. Note that if the damping ratio is between 0.4
and 0.7, then the maximum percent overshoot for step response is between 259 and 490.

Itis important to note that the eguations for obtaining the rise time. peak time. max-
imum overshoot. and settling time are valid only for the standard second-order svstem
defined by Equation (5—10). If the second-order system involves a zero or two zZzeros.
the shape of the unit-step response curve will be quite different from those shown in
Figure 5—7.

EXAMPLE 5-1]
Consider the system shown in Figure 5-6, where & = 0.6 and w,, = 5 rad/sec. Let us obtain the rise

time 7,. peak time 7,. maximum overshoot M, . and settling time 7, when the system is subjected
to a unit-step input.

From the given values of ¢ and w,,. we obtain w,; = w, V1 — 2 = d4and o = fw, = 3. w
- - y . - d .
Rise time t,: The rise timeis g — & ay 5 _ 3-144 B where 8 is given by 8 = tan ' & —0.93 rad
The rise time 7, is thus fr, = w = 0.55 sec
ar 3.14
- - - L

Peak time t,: The peak time is w; — 4 = 0.785 sec
Maxinm overshoor M,: The maximum overshoot is M, = e T/wam — @ (3/4)>314 — (095
The maximum percent overshoot is thus 9.5%. 2 a
Sertling time t;: For the 29 criterion, the settling time is f; = o T g 1.33 sec
For the 59 criterion, f; = % = % = 1 sec

| Servo System with Velocity Feedback.| The derivative of the output signal can

be used to improve syvstem performance. In obtaining the derivative of the output
position signal. it is desirable to use a tachometer instead of physically differentiating the
output signal. (Note that the differentiation amplifies noise effects. In fact. if
discontinuous noises are present., differentiation amplifies the discontinuous NoOises Mmore
than the useful signal. For example. the output of a potentiometer is a discontinuous
voltage signal because. as the potentiometer brush is moving on the windings. voltages
are induced in the switchover turns and thus generate transients. The output of the po-
tentiometer therefore should not be followed by a differentiating element.)

R(s)

K 1 C(s)
Js + B 5 R(s) K C(s)

——— s(Js + B + KKy,)
K}x (b) +

The tachometer. a special dc generator, is frequently used to measure velocity with-
out differentiation process. The output of a tachometer is proportional to the angular
velocity of the motor.

Consider the servo system shown in Figure 5—13(a). In this device, the velocity signal,
together with the positional signal. is fed back to the input to produce the actuating
error signal. In any servo system, such a velocity signal can be easily generated by a
tachometer. The block diagram shown in Figure 5-13(a) can be simplified. as shown in
Figure 5—13(b). giving C(s) K (5—24)

R(s) Js?2 + (B + KK,)s + K
Comparing Equation (5—24) with Equation (5-9). notice that velocity feedback has the

Figure 5-13
(a) Block diagram a)
of a servo system: ¢

(b) simplified blockdiagran:"

effect of increasing damping. The damping ratio £ becomes s = B’z_"—m (5—25)
NV KJ
The undamped natural frequency w,, = VK /J is not affected by velocity feedback. Not-

ing that the maximum overshoot for a unit-step input can be controlled by controlling
the value of the damping ratio ¢, we can reduce the maximum overshoot by adjusting
the velocity-feedback constant K, so that ¢ is between 0.4 and 0.7.

It is important to remember that velocity feedback has the effect of increasing the
damping ratio without affecting the undamped natural frequency of the system.

IEXAMPLE 52|

For the system shown in Figure 5—13(a). determine the values of gain K and velocity-feedback
constant K, so that the maximum overshoot in the unit-step response is 0.2 and the peak time is 1 sec.

With these values of K and K, .obtain the rise time and settling time. Assume that J = 1 kg-m? and
B = 1 N-m/rad/sec.
Determination of the values of K and K,: The maximum overshoot M, is given by Equation
(5—21) as M, — e &NV 1=)r _

- 4 /NI Loy = i ;
This value must be 0.2. Thus, e = 0.2 or ST — 2 1.61 which yields ¢ = 0.456
The peak time £, is specified as 1 sec: therefore, from Eq (5—20). t, = (Zrd = 1 or w,; = 3.14
Since ¢ is 0.456. w,, is ©, = % — 3.53

Since the natural frequency w,, is equalto VK /J, K = Jw’ = w2 = 12.5 N-m

I

Then K, is. from Equation (5-25). K, = 2N K;‘%': = .. SRR, . 0.178 sec

K
Rise tirme t,: From Equation (5-19). the rise time 7, is 7, = TT“,;'B
o
far ] &
where B = tan ! ?d = tan 11.95 = 1.10 Thus, r, is &, = 0.65 sec
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(Impulse Response of Second-Order Systems.] For a unit-impulse input »(z).the
corresponding Laplace transform is unity, or R(s) = 1.The unit-impulse response C(5)
of the second-order system shown in Figure 5-6 is _ w,

C(s) = =
5 + 280,585 + wi,
The inverse Laplace transform of this equation yvields the time solution for the response
c(r) as follows:

For(O = & =< 1. C(I):ﬁefgwnr sin w,, [ ng_ forr = 0O (5*26)
For & = 1, c(t) = wite «-i, forsr = 0O (5—27)
For & = 1, c(t):$87(§*'\/§2*1)‘”n' . @ ST el e s (5—28)

rr
2N 20 PNAZE—1

Note that without taking the inverse Laplace transform of C(s) we can also obtain
the time response c(r) by differentiating the corresponding unit-step response. since
the unit-impulse function is the time derivative of the unit-step function. A family of
unit-impulse response curves given by Equations (5—26) and (5—27) with various val-
ues of & is shown in Figure 5—14. The curves c(f) /w, are plotted against the dimen-
sionless variable w, 7. and thus they are functions only of . For the critically damped
and overdamped cases. the unit-impulse response is always positive or zero: that is,
c(z) = 0. This can be secen from Equations (5—27) and (5—28). For the underdamped
case. the unit-impulse response c(r) oscillates about zero and takes both positive and
negative values.

(t
0.8 //‘\\(/ £=0.1 c()
0.6 Q - gz gg Unit-impulse response

ey 04

ped = 0.7
W, 0.2 ‘\%J ¢=10 // \ /

0 &\— / — '3‘\ 1+ pr

Figure 5-14 \\ —‘/’77 \ )
Unit-impulse_o‘2 \ / N~
response 0.4 P
curves of \\ / 0 % T —
the system: —0.6 Ip
shown in

—0.8 . s . . . )
Figure 5-6. 0 2 4 6 s 8 10 12| Figure 5-15 Unit-impulse response of the system in Figure 5-6.

From the foregoing analysis. we may conclude that if the impulse response () does
not change sign. the system is either critically damped or overdamped. in which case
the corresponding step response does not overshoot but increases or decreases monot-
onically and approaches a constant value.

The maximum overshoot for the unit-impulse response of the underdamped svstem

oceurs at PR - S w ] where O = & = 1 (5—29)
@, 11— 22
[Equation (5—29) can be obtained by equating dc¢/dr to zero and solving for r.] The max-
imum overshoot is &
C(;)mm‘:mnexp(—\ﬁ tan ~1 —£&72 /g},where O < & =< 1 (5—30)

[Equation (5—30) can be obtained by substituting Equation (5—29) into Equation (5—26).]

Since the unit-impulse response function is the time derivative of the unit-step
response function. the maximum overshoot M, for the unit-step response can be
found from the corresponding unit-impulse response. That is, the area under the unit-
impulse response curve from r — O to the time of the first zero. as shown in Figure
5-15.1s 1 + M,. where M, is the maximum overshoot (for the unit-step responsec)
given by Equation (5—21). The peak time 7, (for the unit-step response) given by
Equation (5—20) corresponds to the time that the unit-impulse response first crosses
the time axis.

|5—4 HIGHER-ORDER SYSTEMS|
In this section we shall present a transient-response analysis of higher-order systems in
general terms. It will be seen that the response of a higher-order system is the sum of the
responses of first-order and second-order systems.

|Transient Response of Higher-Order Systems.|] <Consider the system shown in

Figure 5—16. The closed-loop transfer function is C(s) G (=s) (531D
R(s) 1 + G(s)H(s)
In general. G (s) and H(s) are giv?n)as ratios of polvnomials in 5. or
_ P(s _ rn(s)
G(s5) = () and o ({(s) = d(s)

where p(s). g(s). z2(s).and d(s5) are polvnomials in 5. The closed-loop transfer function
given by Equation (5—31) mayw then be written
C(s) _ P(s)A(s) bas™ + bys™—1 4+ - + b

15 + b
R(s)  g(s)d(s) + p(s)ri(s)  aps™ + a;s™ ' + --- + a:llls —+ a:,n (772 = 72)
The transient response of this system to any given input can be obtained by a computer
simulation. (See Section 5—5.) If an analvtical expression for the transient response is de-
sired. then it is necessary to factor the denominator polyvnomial. [MATIL A B mav be
used for finding the roots of the denominator polvnomial. Use the command roots{(den).]
Once the numerator and the denominator have been factored. C(s5) /R(s5) can be writ-
ten in the form C(s) K + z)(s + z)---(s + =, (5—32)
R(s) (.5' —+ pl)(s —+ p2)~>-(_5' —+ pn)

ILet us examine the response behavior of this syvstem to a unit-step input. Consider

first the case where the closed-loop poles are all real and distinct. For a unit-step input.

Equation (5—32) can be written @ = o, =
) =5+ = 5+ & k-8
where a; is the residue of the pole at 5§ = —p;. (If the system involves multiple poles,

then C(s5) will have multiple-pole terms.) [The partial-fraction expansion of C(s5). as
given by Equation (5—33). can be obtained easily with NMATIL . AB. Use the residue
command. (See Appendix B.)]

It all closed-loop poles lie in the left-half 5 plane. the relative magnitudes of the
residues determine the relative importance of the components in the expanded form of
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C(s). If there is a closed-loop zero close to a closed-loop pole, then the residue at this
prole is small and the coefficient of the transient-response term corresponding to this pole
becomes small. A pair of closely located poles and zeros will effectively cancel each
other. If a pole is located very far from the origin. the residue at this pole may be small.
The transients corresponding to such a remote pole are small and last a short time. Terms
in the expanded form of C(s5) having very small residues contribute little to the transient
response. and these terms may be neglected. If this is done. the higher-order system may
be approximated by a lower-order one. (Such an approximation often enables us to es-
timate response characteristics of a higher-order system from those of simplified one.)
Next. consider the case where the poles of C(s5) consist of real poles and pairs of
complex-conjugate poles. A pair of complex-conjugate poles vields a second-order term
in s. Since the factored form of the higher-order characteristic equation consists of first-
and second-order terms. Equation (5—33) can be rewritten
sy — @ % Bl ) v ke NI —
e SN Py = 52 4+ 2&pwps + w3
where we assumed all closed-loop poles are distinct. [If the closed-loop poles involve
multiple poles. C(s5) must have multiple-pole terms.| From this last equation. we see that
the response of a higher-order system is composed of a number of terms involving the
simple functions found in the responses of first- and second-order systems. The unit-
step response < GE), t.l:_le inverse Laplace transforrrn of C(=5).is then

c()=a—+>> a,e Pi' 1> bre t*r cos w N 1— 7t +>, Cre 5! sin w N 1—<¢% 2, for t = 0(5-34)
F— k=1 k=1

Thus the response curve of a stable higher-order svstem is the sum of a number of
exponential curves and damped sinusoidal curves.

IT all closed-loop poles lie in the left-half s plane. then the exponential terms and
the damped exponential terms in Equation (5—34) will approach zero as time 7 increases.
The steady-state output is then c(oc) = a.

Let us assume that the svystem considered is a stable one. Then the closed-loop poles
that are located far from the jw axis have large negative real parts. The exponential
terms that correspond to these poles decay very rapidly to zero. (WNote that the hori-
zontal distance from a closed-loop pole to the jw axis determines the settling time of tran-
sients due to that pole. The smaller the distance is. the longer the settling time.)

Remember that the type of transient response is determined by the closed-loop
poles. while the shape of the transient response is primarily determined by the closed-
loop zeros. As we have seen earlier. the poles of the input R(s) vield the steady-state
response terms in the solution. while the poles of C(s) /R(s) enter into the exponential
transient-response terms and/or damped sinusoidal transient-response terms. The zeros
of C(s) /R(s) do not affect the exponents in the exponential terms. but they do affect the
magnitudes and signs of the residues.

(g + 2r = rn)

|[IDominant Closed-Loop Poles.|] The relative dominance of closed-loop poles is
determined by the ratio of the real parts of the closed-loop poles, as well as by the rel-
ative magnitudes of the residues evaluated at the closed-loop poles. The magnitudes of
the residues depend on both the closed-loop poles and zeros.

If the ratios of the real parts of the closed-loop poles exceed 5 and there are no zeros
nearby. then the closed-loop poles nearest the jw axis will dominate in the transient-
response behavior because these poles correspond to transient-response terms that
decay slowly. Those closed-loop poles that have dominant effects on the transient-
response behavior are called dormiinanr closed-foop poles. Quite often the dominant
closed-loop poles occur in the form of a complex-conjugate pair. The dominant closed-
loop poles are most important among all closed-loop poles.

Note that the gain of a higher-order system is often adjusted so that there will exist
a pailr of dominant complex-conjugate closed-loop poles. The presence of such poles in
a stable svstem reduces the effects of such nonlinearities as dead zone. backlash. and
coulomb-friction.

|Stability Analysis in the Complex Plane.| The stability of a linear closed-loop
system can be determined from the location of the closed-loop poles in the s plane. If
any of these poles lie in the right-half s plane. then with increasing time they give rise
to the dominant mode., and the transient response increases monotonically or oscillates
with increasing amplitude. This represents an unstable system. For such a system. as
soon as the power is turned on. the output may increase with time. If no saturation
takes place in the system and no mechanical stop is provided. then the system may
eventually be subjected to damage and fail. since the response of a real physical svs-
tem cannot increase indefinitely. Therefore, closed-loop poles in the right-half s plane
are not permissible in the usual linear control system. If all closed-loop poles lie to the
left of the jw axis. any transient response eventually reaches equilibrium. This repre-
sents a stable system.

Whether a linear system is stable or unstable is a property of the system itself and
does not depend on the input or driving function of the system. The poles of the input.
or driving function. do not affect the property of stability of the system. but they con-
tribute only to steady-state response terms in the solution. Thus. the problem of absolute
stability can be solved readily by choosing no closed-loop poles in the right-half s plane.
including the jo axis. (Mathematically, closed-loop poles on the jw axis will yvield oscil-
lations. the amplitude of which is neither decaving nor growing with time. In practical
cases. where noise is present. however. the amplitude of oscillations may increase at a
rate determined by the noise power level. Therefore, a control system should not have
closed-loop poles on the jw axis.)
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MNote that the mere fact that all closed-loop poles lie in the left-half 5 plane does not
scuarantee satisfactory transient-response characteristics. If dominant complex-conjugate
closed-loop poles lie close to the jor axis. the transient response may exhibit excessive
oscillations or may be very slow. Therefore. to guarantee fast. vet well-damped. transient-
response characteristics, it is necessary that the closed-loop poles of the system lie in a
pParticular region in the complex plane. such as the region bounded by the shaded area
in Figure 5—17.

Since the relative stability and transient-response performance of a closed-loop con-
trol system are directly related to the closed-loop pole-zero configuration in the s plane.
it is frequently necessary to adjust one or more system parameters in order to obtain suit-
able configurations. The effects of varyving svstem parameters on the closed-loop poles
will be discussed in detail in Chapter 6.

/ S 4

Inn this remion
Figure S—17 & = 0. 4
Region in the /
complex plance
satistfyving the

Cond{tio;is & = .=
and r, = 4 /o .

55 TRANSIENT-RESPONSE ANALYSIS WITH MATLAB
Introduction. The practical procedure for plotting time response curves of systems
higher than second order is through computer simulation. In this section we present the
computational approach to the transient-response analvsis with M ATIL. A B. In particular.
we discuss step response. impulse response. ramp response. and responses to other simple
inputs.

T

———

IMATLAB Representation of Linear Systems.| The transfer function of a system
is represented bw two arrayvs of numbers. Consider the system
C(s) 25 + 25 (5-35)
R(s) 52 + 45 + 25 - T

This system can be represented as two arrays., cach containing the coefficients of the
prolyvnomials in decreasing powers of 5 as follows:

num = [2 25] den = [1T 4 25]
AN alternative representation is NnumMm = [0 2 25] den = [1 4 25]

In this expression a zero is padded. Note that if zeros are padded. the dimensions of
“num’> vector and “den”™ vector become the same. An advantage of padding zeros is that
the “nNnum”™ vector and ““den’”™ vector can be directly added. For example,

num +den = [0 2 25] +[1T a4 25]=1[1 6 50]
If num and den (the numerator and denominator of the closed-loop transfer function)
are known, commands such as step(num,den), step(num, den,t)
will generate plots of unit-step responses (tin the step command is the user-specified time.)

For a control system defined in a state-space form. where state matrix A. control
matrix B. output matrix C. and direct transmission matrix I» of state-space equations are
known. the command step(A,.B,C,D), step(A,B,C,[D,t)
will generate plots of unit-step responses. When t is not explicitly included in the step
commands, the time vector is automatically determined.

Note that the command step(sys) may be used to obtain the unit-step response of a
system. First. define the system by sys = tf(num,den) or swvs = ss(A,B,C,D)

Then. to obtain, for example, the unit-step response. enter step(sys) into the computer.
When step commands have left-hand arguments such as

Iy, >, tl= step(num,den,t) [v,=,t]l= step(A,B,.C,D,iu) [v,>,t] = step(A,B,C,D,iu,t) (5—36)
no plot is shown on the screen. Hence it is necessary to use a plot commmand to see the
response curves. TThe matrices v and x contain the output and state response of the sys-
tem., respectively, evaluated at the computation time points t. (v has as many columns as
outputs and one row for each element in t. X has as many columns as states and one row
for each element in t.)

Note in Equation (5—36) that the scalar iu is an index into the inputs of the system
and specifies which input is to be used for the response, and t is the user-specified time.
If the syvstem involves multiple inputs and multiple outputs, the step command. such as
given by Equation (5—36). produces a series of step-response plots, one for each input

and output combination of *x = Ax + Bu ¥y = Cx +— Du
(For details. see Example 5—3.)
|EXAMP]__E 53 | Consider the following system:

Lo bes ollmlls olnd Lnd-le vllzd~18 el

MAdthough it is not necessary to obtain the transfer-maltrix expression for the system to obtain
the unit-step response curves with MATI. AB. we shall derive such an expression for reference.

For the syvstem defined by X = Ax + Bu ¥y = Cx + Du
the transfer matrix G(s5) is a matrix that relates Y (s5) and U(s) as follows: Y(s) — G(s)U(s)
Taking Laplace transforms of the state-space equations. we obtain
sX(s) — x(0) = AX(s) + BU(s) (5—37) Y(s) = CX(s) + DU(s) (5—38)
In deriving the transfer matrix. we assume that x(0) = 0. Then. from Equation (5—37). we get
X(s) — (sI — A 'BU(s) (5-39)
Substituting Equation (5—39) into Equation (5—38)., we obtain Y(s)—[C(sI— A) 'B +D]|U(s)
Thus the transfer matrix G (s5) is given by G(s) = C(sI — A 'B + D
The transfer matrix G (s) for the given system becomes G(s) = C(sI — A 'B
1 O s —+1 = 1 s L 1 e I s
G (s )= 2
I:O :II: :I I: S+S+6.S|:65 s —+ 1:||:1 (ll 5 +S+6.5|:5+7<5 6.5:|
Hence Yl(s):l [ i = k)
Y2(s) s + 7.5 6.5 Us(s)
52 4+ 5 + 6.5 SZ .4 §F 465

Since this system involves two inputs and two outputs, four transfer functions may be defined.
depending on which signals are considered as input and output. WNote that., when considering the
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signal z¢; as input. we assume that signal 2 is zero. and vice versa. The four transfer functions are

Y,(s) s—1 Yi(s) s Yo(s) s + 7.5 Yo(s) 6.5
Ul(s)_52 45 +6.5" UL(s) s7+s5+6.5 U (s) 52 +- 5 + 6.5 LL(s) s2 + 5 + 6.5
Acssume that ey and -, are unit-step functions. The four individual step-response curves can then
be plotted by use of the command step(A,B,C, D)

MATLAB Program 5—1 produces four such step-response curves. The curves are shown in Figure 5—18.
(Note that the time vector tis automatically determined, since the command does not include t.)
MATLAB Program 5—1

A= -1 —1;6.5 0O]; B =11 1;1 O]; C=1[1T O0;0 1]; D= [0 0;0 0]; step(A,B,C, D)

Ste Response
o6 . Froimnm: Ul. 1 54 Op6 i From: LIZ2
.2
(8]
= o=
= : I'—]"ir1’1e (sec)
= —0.-4 5 =1 = 12 O
= = ; ; = T T
1.5 |- : T 1.5 | B |
—a
==
— 1 - — T e R o e
=
O , éTime (sec) o Tlme (sec)
o <+ B 12 (8] =1 = 12
Figure S—I1I8 Unit-step response Curves.

To plot two step-response curves for the input ¢, in one diagram and two step-response curves
for the input ,; in another diagram. we may use the commands
step(A,.B,C,[D,1) and step(A.B,.C,[D,2)
respectively. MATIL. A B Program 5—2 is a program to plot two step-response curves for the
input ¢, in one diagram and two step-response curves for the input . in another diagram.
Figure 5—19 shows the two diagrams. each consisting of two step-response curves. (This
MATILAB program uses text commands. For such commands, refer to the paragraph following

this example.)

MATLAB Program 5—2

Yo FEEEX N this program we plot step-response curves of a system

% having two inputs (ul and u2) and two outputs (y1 and y2) **¥**

Yo FEFEEFANe shall first plot step-response curves when the input is

% ul Then we shall plot step-response curves when input is U2 #*xx*x*xx*
Yo FFEFFF Enter matrices A, B, C, and D #*****
A=1[-1T -1;6.5 O]; B=1[1 1;1 0O0]; C=[1 0;0 1]; D =[O0 O;0 O];
Yo FE¥*EE To plot step-response curves when the input is ul, enter
Yo the command 'step(A,B,C,[D,1)" *****

step(A,B,C,D,1) grid
title ("Step-Response Plots: Input = ul (u2 = 0)")
text(3.4, -0.06,'Y1") text(3.4, 1.4,'Y2")

Yo FEFF* Next, we shall plot step-response curves when the input
Yo is u2. Enter the command I-%ltep(ArB-C,D,Z)' o sk ok ok ke

step(A,B,C,D,2) gri
title ("Step-Response Plots: Input = u2 (ul = O)")
text(3,0.14,'Y1") text(2.8,1.1,'Y2")
2 Step-Response Plots: Input = u1 (12 = 0) 16 Step-Response Plots: Input = #2 (11 =0)
' % 14} ﬁ ﬁ ﬁ Q ﬁ ﬁ 1
2 s : HE : : : : : :
==} Y2 =12 : B
| ’ \/
H 08 L H H i
Figure 5-19 : : : : : : :
Unit-step 0.5 (a) 0.6 L
response - : 1 : : : : : :
curves. (a) 04 L ; ; ; ; : ; i
1, is the (b)
input(uzzo): 0 v | 0.2 7 AR SIE SRR (IRLE FENRTL FIRRIE SUSRE TN SUUNE
(b) &, is the
input(u;=0) 0
—0.5 : : - . i ‘ i i i 0.2 ; i i H i i
o 1 2 3 4 3 6 7 8 9 10 “o 1 2 3 4 5 6 7 8 9 10
Time (sec) Time (sec)

[Writing Text on the Graphics Screen.| To write text on the graphics screen. enter.
for example. the following statements:

text(3.4, —-0.06,'Y1") and text(3.4,1.4,"Y2")
The first statement tells the computer to write “Y 1~ beginning at the coordinates x = 3.4,
y = —0.06. Similarly. the second statement tells the computer to write “Y 27 beginning at
the coordinates x = 3.4, v = 1.4, [See MATLAB Program 5—2 and Figure 5—19(a).]

AAnother way to write a text or texts in the plot is to use the gtext command. The
syntax is stext('text')
When gtext is executed. the computer waits until the cursor is positioned (using a
mouse ) at the desired position in the screen. When the left mouse button is pressed.,
the text enclosed in simple quotes is written on the plot at the cursor’s position. Any
number of gtext commands can be used in a plot. (Sce. for example. MATLAB
Program 5—15.)
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(MATLAB Description of Standard Second-Order System]
Avs noted earlier. the second-order system w> _
G(s) - (5—40)

52 + 27w, s +
is called the standard second-order system. Given w,, and £.the command
printsys(num,den) or printsys(num,den,s)
prints num/den as a ratio of polynomials in s.

Consider, for example, the case where w,, = S rad/sec and & = 0.4 MATILAB Program
5-—3 generates the standard second-order system. where w, = 5 rad/sec and & = 0.4.
Note that in MATLAB Program 53, “num 07 is 1.

MATLAB Program 5—3

wn = 5;

damping_ ratio = 0.4;

[NMumMmO,den] = ord2(wn,damping_ratio);
NnuMm = 522 numo;
printsys(num,den,'s")

num/den = S~Z | 4s + 25

|Obtaining the Unit-Step Response of the Transfer-Function System.| Letus

consider the unit-step response of the system given by 55
G(s) =
(s) s2 + 45 + 25
MATILAB Program 5—4 will vield a plot of the unit-step response of this system. A plot
of the unit-step response curve is shown in Figure 5—20.

MATLAB Program 5—4

Yo ——————————— Unit-step response —————————————

Yo FEFEE Fnter the numerator and denominator of the transfer function *F+*
Nnum = [25]; den = [1 4 25];

Vo FFEEEX Enter the following step-response comimanc #s***

step(num,den)

Ve FFEEEE Fnhter grid and title of the plot *****

grid title (' Unit-Step Response of (G(s) = 25/(s™N24+4s5+25)")

Unit-Step Response of (G(s5) = 25/(5"+ds+25)
1.2 L : : -
= 1
=
=
= 0.8 —
0.6 —
0.4 - -
Figure S—20 : :
Tresponsce : H
CcCLuurwve. : : : : :
DCI CI_IS lI l_IS 2I 2:5 3
Time (sec)

Notice in Figure 5—20 (and many others) that the x-axis and y-axis labels are auto-
matically determined. If it is desired to label the x axis and y axis differently, we need
to modifty the step command. For example. if it is desired to label the x axis as 't Sec'
and the y axis as “Output.” then use step-response commands with left-hand arguments,
such as c = step(num,den,t) or.more generally. [v,x,t] = step(num,den,t)
and use plot(t,y) command. Sece. for example. MATLAB Program 5—5 and Figure 5—21.

MATLAB Program 5—5
R Unit-step response —————————————
Nnum = [25]; den = [1 4 25];: t= 0:0.01:3;
[v,»,t] = step(num,den,t);
plot(t,yv)
erid title('Unit-Step Response of (G(s)=25/(s"2+4s+25)")
xlabel('t Sec") viabel("Output')
Unit-Step Response of Gi(s) — 25/(s2+ds+25)
1.2 |- S e -
E : '
= 1
O.8 | 4
O.6 | 4
Figure 5—21 : :
Unit-step : :
responsce 0.4 - a o N N
curve.
o2 | R i
o o5 | B =y— - = =5 3

(Obtaining Three-Dimensional Plot of Unit-Step Response Curves with]
MATLAB. MATLAB enables us to plot three-dimensional plots easily. The commands
to obtain three-dimensional plots are ““mesh’™ and ““surf.” The difference between the
“mesh™ plot and ““surf™ plot is that in the former only the lines are drawn and in the lat-
ter the spaces between the lines are filled in by colors. In this book we use only the
“mesh”™ command.
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EXAMPLE 54|

Consider the closed-loop system defined by R(s)

— 1
sZ + 25 + 1
(The undamped natural frequency w,, is normalized to 1.) Plot unit-step response curves c(7) when

& assumes the following values: & =0, 0.2, 0.4, O0.6. 0.8, 1.0
Also plot a three-dimensional plot.

Aan illustrative WMIATLAB Program for plotting a two-dimensional diagram and a three-
dimensional diagram of unit-step response curves of this second-order system is given in MALT'L A B
Program 5—6. The resulting, plots are shown in Figures 5—22(a) and (b)., respectively. WNotice that
we used the command meshit,zeta,v') Lo plol the three-dimensional plot. We may use a cormmmand

three-dimensional plot the same as INgure 5—22(b). except that x axis and y axis are interchanged.
See Problem A—-5—-15.|

WWhen we want to solve a problem using MATLAB and if the solution process involves many
repoetitive computations, various approaches may be conccecived to simplify the NATI.AB pro-
oram. A frequently used approach to simplify the computation is to use “for loops.”” MATT AT Pro-
gram 5—O0 uses such a ““tor loop.” 1In this book many MALTLADB programs using “for loops™ are
presentad for solving a variety of problems. Readers are advised to study all those problems care-
fully to familiarize themselves with the approach.
MATLAB Program 5—6

[/ P — Two-dimensional plot and three-dimensional plot of unit-step response curves for the standard
% second-order system with wn =1 and zeta =0, 0.2, 0.4, 0.6, 0.8, and 1. ———

t=0:0.2:10;

zeta= [0 0.2 0.4 0.6 0.8 1]; forn=1:6; num = [1]; den = [1 2*zeta(n) 11;

[v(1:51,n),x,t] = step(num,den,t); end

% To plot a two-dimensional diagram, enter the command plot(t,y).

plot(t,y) grid

title('Plot of Unit-Step Response Curves with Nomega_n = 1 and \zeta = 0, 0.2, 0.4, 0.6, 0.8, 1"
xlabel('t (sec)") yviabel('Response')

text(4.1,1.86,\zeta = 0") text(3.5,1.5,'0.2") text(3 .5,1.24,'0.4") text(3.5,1.08,'0.6")
text(3.5.0.95.'00.8") text(3.5.0.86.'1.0"

% To plot a three-dimensional diagram, enter the command mesh(t,zeta,y').

mesh(t,zeta,y') title('Three-Dimensional Plot of Unit-Step Response Curves')

xlabel('t Sec') viabel('"\zeta') zlabel('Response')
Plot of Unit-Step Response Curves withw, =1 and{ =0, 0.2,0.4,0.6, 0.8, 1 Three-Dimensional Plot of
T T ¥ T T T T T T Unit-Step Response Curve
1.8 11 2
1.6 - -
1=50 ]
1.4 112
g
o =1 |
%« 1.2 - 112
=
Z 1t 0.5 |
0.8 B
o
1
06 T B NS |
0.4 g
0.2 + b . .0 [4) .
: : : : : : : : Figure 5-22(a)Iwo-dimensional plot of unit-step response curves
0 i i i i i i i i i for ¢ = 0.0.2,0.4,0.6.0.8, and 1.0; (b) three-dimensional plot of
0 1 2 3 4, (Secjs 6 7 8 9 1 unit-step response curves.

IObtaining Rise Time, Peak Time, Maximum Overshoot, and Settling Time|
with MIATLADB. MATIL AB can conveniently be used to obtain the rise time. peak time.
maximum overshoot, and Settlingéi’(ln?. Consider the syvstem defined by

S5

R(s)  s2 + 65 + 25
MATILAB Program 5—7 vields the rise time. peak time, maximum overshoot. and settling
time. A unit-step response curve for this syvstem is given in Figure 5—23 to verify the

results obtained with MATIL.AB Program 5—7. (INote that this program can also be
applied to higher-order systems. See Problem A—5—-10.)

MATLAB Program 5—7
Yo —————— This is a MATLAB program to find the rise time, peak time, maximum overshoot,
% and settling time of the second-order system and higher-order system —————
Yo ——————— In this example, we assume zeta = 0.6 and wn =5 ——————-
num = [25]; den =[1 6 25]; t = 0:0.005:5; [v,x,t] = step(num, den, t);
r= 1; while yv(r) < 1T.0001;r =r + 1; end; rise_ time = (r - 1)*0.005 rise_time =0.5550
[vmax,tp]l = max(y); peak_time = (tp - 1)*0.005 peak_time = 0.7850
max_overshoot = ymax-1 max_overshoot = 0.0948
s = 1001 ; while y(s) > 0.98 & yv(s) <= 1.02; s =s - 1; end; settling_time = (s - 1)*0.005
settling_time = 1.1850 :
Step Responsa
= 1 b T ' ' '
Eos ol .
o6 i E .
0.4 - B T e -
Figure S5S—23
Unit-step 0.2 b R R B
TroespPoOoOnsa
cuUurwve. O i
O 0.5 1 1.5 ER
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(Impulse Response.] The unit-impulse response of a control system may be
obtained by using any of the impulse commands such as

impulse(inum,den) impulse(A,B,C,[D) [v, >, t] = impulse(num,den)
[v,>x<,t] = impulse(num,den,t) (5—41) [v,>,t] = impulse(A,B,C,[D)
[v,>x,t] = impulse(A, B,C,D,iu) (5—42) [v,>x,t] = impulse(A, B,C,[D,iu,t) (5—43)

The command impulse(num,den) plots the unit-impulse response on the screen. The
command impulse(A,B,C,D) produces a series of unit-impulse-response plots. one for
eceach input and output combination of the system xX = Ax + Bu ¥y — Cx + Du
Note that in Equations (5—42) and (5—43) the scalar iu is an index into the inputs of the
system and specifies which input to be used for the impulse response.

Note also that if the command used does not include ““t77 explicitly. the time vector
is automatically determined. If the command includes the user-supplied time vector "t
as do the commands given by Equations (5—41) and (5—43)]. this vector specifies the
times at which the impulse response 1s to be computed.

If MATILAB is invoked with the left-hand argument [y, x,t]. such as in the case of
[v,.>,t] = impulse(A,.B,C,[D). the command returns the output and state responses of the
swyvstem and the time vector t. NWo plot is drawn on the screen. TThe matrices v and x con-
tain the output and state responses of the system evaluated at the time points t. (v has
as many columns as outputs and one row for each element in t. x has as many columns
as state variables and one row for each element in t.) To plot the response curve. we
must include a plot command. such as plot(t,v).

IEXAMPLE 5—5' i ) c(s) 1
Obtain the unit-impulse response of the following systerm: R(s) — G(s) = 2 © 02y — 1
MATILAB Program 5—8 will produce the unit-impulse response. The resulting plot is shown in

Figure 5—24. MATLAB Program 5—8
Nnum = [1]; den = [1T 0.2 1]; impulse(num,den);
grid title(C"Unit-lmpulse Response of (G(s) = 1/(s™2 + O.2s + 1)°)
Unit-Ilmpulse Response of G(s5) = 14524+ 0.25+1)
0.8 T : T T . . : . r ]
0.6 i
0.4 i
=
= 0.2 R i
= :
£ o f\
—0.2 : .

Figure S—24 0.4
Unit-impulsc

responsec —0.6 : : : b
curve. _O.R i . . . i i i i i
o s 10 15 20 ___ 25 30 35 40 4s S0
Time (sec)
| Alternative Approach to Obtain Impulse Response.| Note that when the initial

conditions are zero. the unit-impulse response of G(5) 1s the same as the unit-step

response of sG(5).
Consider the unit-impulse response of the system considered in Example 5—5. Since

R(s) = 1 for the unit(—i{npulse input. we have
s) . L 1 _ 5 1
R(s) —C€0) = G(s) = 247025 + 1 sZ + 02s = 1 s

We can thus convert the unit-impulse response of G (5) to the unit-step response of

sG(s). If we enter the following num and den into MATLAB,
num = [0 1 O] den=[1 0.2 1]

and use the step-response command: as given in MIATILAB Program 5—9. we obtain a
prlot of the unit-impulse response of the system as shown in Figure 5—25.

MATLAB Program 5—9
Nnum = [T O]; den = |1 0.2 1];

step(num,,den); grid
title("Unit-Step Response of s(G(s) = s/(s™2 + 0.2s + 1))
Unit-Step Response of sGs) = so(s=2+ 0. 25+ 1 )
o = . ' , . : . . .
=
= :
= .4 JE N A S S |
Figure S—25 O
TUnit-immmpulse- \\/
response curwve —0.2 £ RRRRERES A A N
obtained as the 4 H
unit- step -
response of _o.6 |
SG(s) = ) :
s s74+0.25s +1 ). —0O.8 i i i
o = 1O 15 2 s 3 35 4O s By S0
Time ( sec)
|[Ramp Response.| There is no ramp command in MATLAB. Therefore. we need

to use the step command or the Ilsim command (presented later) to obtain the ramp re-
sponse. Specifically. to obtain the ramp response of the transfer-function system G (s5).
divide G (s) by s and use the step-response command. For example. consider the closed-

loop system s) 2s + 1
R(s) N 2s + 1 1 2s + 1 1
. . o > _ _ 1
For a unit-ramp input. R(s) = 1/57. Hence C(s5) = 4+ s + 157 (3 + 5 F D)s s
To obtain the unit-ramp response of this system. enter the following numerator and de-
nominator into the MiATIL AB program: num = [2 1]; den=[1 1 1 0O];
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and use the step-response command. See MATLAB Program 5—10. The plot obtained
by using this program is shown in Figure 5—26.
MATLAB Program 5—10

P —— e — Unit-ramp response ——————————————
Ve FHFFFEE Theae unit-ramp response is obtained as the unit-step response of (G(s)/s Fx*x*x+
Yo FFEFEE FAater thhe numerator and denominator of (G(s)/s ®H*+*

Nnum = [2 1]; den = [1 1T 1 0O1;

Yo FFEFEX Specify the computing time points (such as t = 0:0.1:10)

Yo and then enter step-response command: ¢ = step(numMm,demn, t) FH+=x
t= 0:0.1:10; c = step(num,den,t);

Yo FFE*=* N plotting the ramp-response curve, add the reference

Yo iNnput to plot. The reference input is t. Add to argument of the plot command with
% the following: t,t,'-'. Thus plot command becomes as : plot(t,c,'o' £, t,'-") ****w*x
plot(t,c,'o', t.t,."-")

Vo FEEEE A grid, title, xlabel, and yviabel ****=*

grid title('Unit-Ramp Response Curve for System (G(s) = (2s + 1)W(s™2 + s + 1))
xlabel('t Sec') viabel("lNnput and Output')
Unit-Ramp Response Curve for System G(s) — (25 + 1 ) (sZ + 5 +1)
1O b
Ey! .
=
=
T R < 1
=
4 e |

Figure 5—26 : :
Unit-ramp 2 b Sl e
response ‘ : : i
curve.

(8] 1 2 3 ) s (& 7 8 9 10
r Sec

(Adnit-Ramp Response of a System Defined in State Space]] Next, we shall treat
the unit-ramp response of the systemm in state-space form. Consider the systerm described by
*x AMaw + Bare » Cx +— e
where ¢ is the unit-ramp function. In what follows, we shall consider a simple example
to explain the method. Consider the case where

A — ? :1:|,B:|:?ij(O):0 c — [1 o]. D — [0]
W hen the initial conditions are zeros. the unit-ramp response is the integral of the unit-
step responS?_ He_rlce the urlit—rz-lmp re.sponse can be given bw f v s s 14)
From Equation (5—44). we obtain =z = g s 15)
ILet us define =T — xs3 Then Equation (5—45) becomes ey — (5—4a6) - -

Combining Equ‘jtion (5—46) with the original state-space equatlorl‘we obtain

a1
I: 3:| I:l —1 :| I: :| [ :| (S5—47) z = [O O 1]|x= (5—a8)
O (@] X

where i« appearing in Equation (5—47 ) is the unit- Step function. These equations can be

written as x AAx +— BB = CCx + D0
O 1 O =
where A= |—1 —1 O |=— BB— E:):l CcC = [O O 1]. O = [0]
1 O O |
Note that x5 is the third element of x. A plot of the unit-ramp response curve zZ(r) can
be obtained by entering WILATI . AB Program 5—11 into the computer. A plot of the unit-

ramp response curve obtained from this MIATI . AB program is shown in Figure 5—27.
MATLAB Program 5—11

Vo ——— Unit-ramp response ——————————————

oy, *EEFE Unit-ramp response is obtained by adding new state variable x3. The dimension
9%, of the state equation is enlarged by one *****

o, FEFFE Foter matrices A, B, C, and D of original state equation and output equation
AA=[0 1;:-1 -1]; B =100; 11; C =1[1 OI; D = [0]1:;

Yo FEF*F* Enter matrices AA, BB, CC, and DD of, enlarged state eqn and output eqmn s
AA = [A zeros(2,1);C O]; EB = [B;0]; CcCC =10 O 11; DD = [0];

Yo FEFFE* Enter step-response command: [z, x,t] = step(AA, BB,CC,[D[D) *****

[z,x%x,t] = step(AA,BB,CC,DD);

G FFEEF* N plotting x3 add the unit-ramp input t in the plot

% by entering the following command: plot(t,x3,'o',t,t,'-") ***+*

x3 = [0 O 1]*x'; plot(t,x3,'o"'. t.t,'-")
grid title("Unit-Ramp Response') xlabel('t Sec") viabel('Input and Output')
Lo Unit-Ramp Response
9
B
= 7
=
= 6
=
=s
=
=
Figure 527 — 4
Umnit-ramp 3
response
curve. 2
1 : : . : .
o i i i i i
(8] S 7 8 o 10
¥ Sec
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[©Obtaining Response to Arbitrary Input.] To obtain the response to an arbitrary
input. the command Isim may be used. The commands like

Isimi(numm,den,r,t) Isirm(A,B,C,[D, u,t) v = Isim(num,demn,r,t) v = IsimA,B,C,[D,u,t)
will generate the response to input time function r or u. See the following two examples.
(Also. see Problems A—S—14 through A—5S—16.)

EXAMPLE 56| c(s) _

Using the Isim command. obtainunit-ramp response of the syvsterm:

R(s 52+ + 1
We mayv enter MATI. . AB Program 5—12 into the computer to obtain the unit-ramp response. The
resulting plot is shown in Figure 5—28.

2s + 1
s
r

AMATLAB Program 5—12
P ——————— Ramp Response ———————
Nnum = [2 11; den =[1 1 11; t= 0:0.1:1T0; = & v = Isim(num,den,r,t);
plot(t,r,'-'t,v,'o") grid
title('Unit-Ramp Response Obtained by Use of Command "lsim™"™"') xlabel('t Sec")
viabel('Unit-Ramp Input and Systerm OQOutput') text(6.3, 4.6, 'Unit-Ramp Input')
text(4.75,9.0,"Output')
— 12 Unit-Ramp Response Obtained by use of Command ““Isimnm™
é H T H H H H H H H
=
= 10
=
=z =
=
= o
5:?
E a
Figure S—28 =2
Unit-ramp
responsc.
L8]
r Sec
[EXAMPLE 5—7] 7 _[—1 os Lo, o o
Consider the system . — 1 O xs 1 x|

Using MATLAB. obtain the response curves v(7) when the input ¢ is given by
1. 1z£& — unit-step input 2. e — e *
Acssume that the initial state is x(0) = 0.
A possible MATLAB program to produce the responses of this system to the unit-step input
[z¢ = 1(r)] and the exponential input [z e ] is shown in MATLAB Program 5—13. The result-
ing response curves are shown in Figures 5—29(a) and (b). respectively.

MATLAB Program 5—13
t=0:0.1T:12; A= [-1T O.5:-1T 0O]; B = [0:1]; G- = [I: “6]: D = [0O];
% For the unit-step input u = 1(t), use the command "y = step(A,.B,.C,[>,1.,0)".
v = step(A,B,C,[D,1,t); plot(t,y) srid
title("Unit-Step Response') xlabel('t Sec") viabel('Output')
% For response to exponential input u = exp(-t), use command "z = Isim(A,B,.C,[D,u,t".
u = exp(-t); z = Isim(A, B, C,D,u,t); plot(t,u,'-',t,z,'o") erid
title(' Response to Exponential Input u = exp(-t)")
xlabel('t Sec') viabel('Exponential Input and Systerm OQutput')
text(2.3,0.49,'Exponential input') text(6.4,0.28,'Output')
Unit-Step Response Response to Exponential Input o = &
1+ 55‘ 1 L R
Z 08 L. ] go_g J
S o6 L : : : | § 0.6 R
: : : : = Exponential Input
Figure 5-29 ) | ./ e (@) e B o
(a)Unit-step : : ; Z o2 ) ]
response: o | : 7 : S
(b)response : : : : o p
to input o : : : : :
u=e" 0 2 4 G © 8 10 1] —024 3 i, o © = io >

(Response to Initial Condition.] In what follows we shall present a few methods
for obtaining the response to an initial condition. Commands that we may use are ““step’™
or “Tinitial™. We shall first present a method to obtain the response to the initial condi-
tion using a simple example. Then we shall discuss the response to the initial condition
when the system is given in state-space form. Finally, we shall present a command initial

to obtain the response of a system given in a state-space form.

EXAMPLE 58]

Consider the mechanical system shown in Figure 5—30. where sz = 1 kg. & = 3 N-sec,/m. and
K = 2 N/ m. Assume that at r = O the mass sz is pulled downward such that x(0) = 0.1 m and
2(0) = 0.05 m/sec. The displacement x(r) is measured from the equilibrium position before the
mass is pulled down. Obtain the motion of the mass subjected to the initial condition. (Assume
no external forcing function.) The svstem equation is mix + bx + kx = O
with the initial conditions x(0) = 0.1 m and x(0) = 0.05 m/sec. (x is measured from the equilib-
rium position.) The I.aplace transform of the system equation gives
52X (5) — sx(0) — x(0)] + BsX(s) — x(O0)] + AX (s) = O
or (#2252 + bs + k)X (s) = mx(0)s + rmex(0) + bBx(0)

Solving this last equation for X (5) and substituting the given numerical values. we obtain

X (=) rrrx(O)s +2 rrex(0) + Hx(0) _ O.1s + 0.35

ms® +— bs + Kk 52 4+ 35 + 2 - -
This equation can be written as X (s) = O.15" + 0.355

1

5= - By 42

Hence the motion of thhe mass s may be obtained as the unit-step respo o
systern: G(s) — 0.15% + 0.35s
52 + 35 + 2
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MATILAB Program 5—14 will give plot of mass. motion in Figure 5—-31 i E_;_'
MATLAB Program 5—14 a
Vo —m———— Response to initial condition ———————————————

W FEFHE SQycterrm response to initial condition is converted to

Yo a unit-step response by modityving the numerator polynomial #F*%* J'

o, wEFFR Chtar numerator and denominator of transfer function G(s) #x=ss

num = [0O.T 0.35 0]; den =11 3 2]; x

Vo FEFFF PFnhter the following step-response comimang s

step(num.,den) F]gureq 30

Yo FHFFE Enter grid and title of the plot #Hs Mechanical
grid title('Response of Spring-Mass-Damper System to Initial Condition') system.

}ﬁ 3

Response of Spring-Mass-Damper System to Initial Condition

006
Figure S—31
Response 0,04
of the
mechanical
swysterm 0.02

considered in
Example 5—8.

O

O 0.5 1 1.5 2 2.5 3 3.5 4 Aa4.5 5
Time (sec)

(Response to Initial Condition (State-Space Approach, Case 1).] Consider the
system defined by x = AX, x(0) = xn (5—49)
I et us obtain the response x(7) when the initial condition x(0) is specified. A ssume that there
is no external input function acting on this system. Assume also that x is an s-vector.
First., take Laplace transforms of both sides of Equation (5—49).

sX(s) — x(0) = AX{(s)
This equation can be rewritten as sX(s) = AX(s) + x(0) (5—50)
Taking the inverse L aplace transform of Equation (5—50). we obtain
X = Ax + x(0) &(r) (5—51)

(Notice that by taking the Laplace transform of a differential equation and then by
taking the inverse L aplace transform of the Laplace-transformed equation we generate
a differential equation that involves the initial condition.)

Now define z — X (5—-52)
Then Equation (5—51) can be written as Z = Az + x(0) &(r) (5—53)
By integrating Eq (5-53) with respect to r. obtain Z=Az+ x(0)1(f)=Az+Bu (5-354)

where B = x(0), e = 1(z)
Referring to Equation (5—52), the state x(r) is given by z(r). Thus,
x — 2 — Az + Bu (5—55)

The solution of Equations (5—54) and (5—55) gives the response to the initial condition.
Summarizing,. the response of Equation (5—49) to the initial condition x(0) is obtained

by solv1ng the following state- Space equations:
z = Az + Bu x — Az + Bu where B — x(0). = 1(1)

MATI AB commands to obtain the response curves, where we do not specity the time
vector t (that is. we let the time vector be determined automatically bv MATIL.AB). are

given next.

%o Specifty matrices A and B [x,z,t] = step(A,B,A,B); x1T =11 O O ... O0]*x"';

x2 =10 1T O ... O0O]*x'; . . - xn = [0 O O ... 1]*x"; plot(t,x1 ,t,x2, ... ,t,xn)
If we choose the time vector t (for example. let the computation time duration be

from t =0 to t = tp with the computing time increment of At), then we use the following

MATI AB commands:

t = O: AL: tp; Yo Specity matrices A and B [x,z,t] = step(A,.B.A. B,1,0);

x1T =[1 O O ... O]l*x"'; x2 =[O0 1 O ... O0]l*x"; . - - xn = [0 O O ... T]*x";

plot(t,>x1 ,t,x2, ... ,t,xn) (See. for example. Example 5—9.)

(Response to Initial Condition (State-Space Approach, Case 2).] Consider the
system defined by

X = Ax, x(0) = xo  (5-56) y — Cx (5-57)
(Assume that x is an sn-vector and y is m-vector.) Similar to case 1, by defining z — x
we can obtain the following equation: z = Az + x(0)1(7) = Az + Bu (5—-58)

where B = x(0). w = 1(r)

Noting that x = z, Equation (5-57) can be written as y = Cz (5-59)
By substituting Eq (5-58) into(5-59), we obtain ¥y = C(Az+Bu)=CAz+CBu (5—60)
The solution of Eq (5-58) and (5—-60). rewritten here z=AZ+Bu v=CAz+CBu
where B = x(0) and ¢« = 1(z). gives the response of the system to a given initial condi-
tion. MATILAB commands to obtain the response curves (output curves y1 versus t, yv2
versus t, ... , ym versus t) are shown next for two cases:

Case A. When the time vector t is not specified (that is, the time vector t is to be de-

termined automatically by MATIL AB):
% Specify matrices A, B, and C [v,z,t] = step(A,B,C*A,C*B); vl =11 O O ...0I*";

v2 =10 1T O ...0]*'; . . . vim= [0 O O ... 1]1%y'; plot(t,y1,t,v2, ... ,t,ym)
Case B. When the time vector t is specified: t = O: At: tp;

Yo Specify matrices A, B, and C [v,z,t] = step(A,B,C*A ,C*B,1,t) vi =11 O O ... O0]*y"';
v2 =10 1T O ... 0]*y"'; . - - vim =[O O O ... 1[*y"; plot(t,v1,t,v2, ... ,t,vm)
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(EXAMPLE 5-9])

Obtain the response of the system subjected to the given initial condition

X (0] x,(0) L B
I::‘rz] I:ID —S]I: ]I;z(O):l ] or X AX, x(0) X

Obtaining the response of the system to the given initial condition resolves to solving the unit-step
response of the following system:

z = Az + Bu X = Az + Bu where B = x(0), = 1(r)

Hence a possible MATLAB program for obtaining the response may be given as shown in
MATLAB Program 5—15. The resulting response curves are shown in Figure 5—32.

MATLAB Program 5—-15
= 0:0.01:3; A=[0 1;-10 -5]; B =1[2;1]; [x,z,t] = step(A,B,A,B,1,t); x1T =1 O]*x
x2 =[O T[*x'; plot(t,x1,'x',t,x2,'-") erid title('Response to Initial Condition')
xlabel('t Sec") viabel('State Variables x1 and x2") gtext('x1") gtext('x2")
Response to Initial Condition Response to Initial Condition

(88
(8]

State Variables x; and x,
State Variables x; and x,

0 0

Figure 5-32 _ , -1 4
Response Figure 5-33
of system Response )
in Example ~ || curves to |

S9to : : : ] initial :

initial = ; . . : ; condition. _3 i i i i i
condition. " 0.5 1 1.5 2 2.5 3 0 0.5 I e 15 2 2.5 3

t Sec

For an illustrative example of how to use Equations (5—58) and (5—60) to find the re-

sponse to the initial condition. see Problem A—5—16.
[Obtaining Response to Initial Condition by se of Command Initial. |
system is given in the state-space form., then the following command
initialA,B,C,D,l[initial condition],t)
will produce response to initial condltlon Suppose that we have the system defined by

If the

X = Ax + B, x(0) = = Cx + D where
A = © ! B — | © c =[0 O D = o0 xo = [2]
o —10 —s5 |- = o |- =L ]- = 1

Then the command ““initial™ can be used as shown in MATILAB Program 5—16 to obtain
the response to the initial condition. The response curves x,(z) and x,(7) are shown in
Figure 5—33. Thew are the same as those shown in Figure 5—32_

MATLAB Program 5—16

t = 0:0.05:3; A=10 1;-10 -5]; B = [0;:0]; C = |0 O]; D = [O]:
[v,x] = initial(A,B,C,[D,[2;1]1,t); xT = [T O]*x"; x2 = [O 1]*x";
plot(t,x1,'o',t,x1,t,x2,"'x",t,x2) grid rtitle('Response to Initial Condition')
xlabel('t Sec") viabel('State Variables x1 and x2") gtext('x1") stext('>x2")

(EXAMPLE 5—10]

Consider the following system that is subjected to the initial condition. (No external forcing
function is present.) g 4+ 8y + 17y + 10y = O wv(0) = 2, »y(0O) = 1, V(0) = 0.5
Obtain the response y(r) to the given initial condition.

Bwv defining the state variables as == A = A —
we obtain the follovvlng state-space represerltﬂt1on for the SN Stem

xz — 0 0 1 x2(0) y = [1 O 0]
| 2 —10 —17 —S 25 (0) 0.‘

A possible MATIL. AB program to obtain the response v(r) is given in MATI. AB Program 5—17.
The resulting response curve is shown in Figure 5—3<4.

MATLAB Program 5—17

t = 0:0.05:1T0; A= [O 1 OO0 O 1:-1T0 -17 -8]1; B = 10;0;0]; _ = [1 O O];
D = [O]; v = initialtA, B, C,[D,[2;:1;0.5],t); plot(t,w) srid
title("Response to Initial Condition') <xlabel('t (sec)") viabel("Output vw')

Response to Initial Condition

Figure 534

Response
0.5 —
»(zr) to
initial
condition. o :
o 1 2 3 <4 s o 7 8 L= 10
¥ (sec)
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B—G ROUTH'S STABILITY CRITERION]
The most important problem in linear control systems concerns stability. That is. under
what conditions will a system become unstable? If it is unstable. how should we stabi-
lize the system? In Section 5—4 it was stated that a control system is stable if and only if
all closed-loop poles lie in the left-half s plane. Most linear closed-loop systems have
closed-loop transfer functions of the form

C(s) _ bgs™ + bys™ ' + --- + b, s + b,  B(s)

R(s) aos” + a7 ' + --- + a,,_,5 + a,,  A(s)
where the a’s and bH’s are constants and sz = r. A simple criterion. known as Routh’s
stability criterion. enables us to determine the number of closed-loop poles that lie in
the right-half s plane without having to factor the denominator polvnomial. (The
polyvnomial may include parameters that MATLAB cannot handle.)

(Routh’s Stability Criterion.] Routh’s stability criterion tells us whether or not
there are unstable roots in a polyvnomial equation without actually solving for them.
This stability criterion applies to polyvnomials with only a finite number of terms. When
the criterion is applied to a control system. information about absolute stability can be
obtained directly from the coefficients of the characteristic equation.

The procedure in Routh’s stability criterion is as follows:

1. Write the polvnomial in s in the following form:

ST + a5 + --- + a,, .5 + a, — O (5—61)
where the coefficients are real quantities. We assume that «, == 0O: that is, any zero
root has been remowved.

2. If anv of the coefficients are zero Or negative in the presence of at least one posi-
tive coefficient. a root or roots exist that are imaginary or that have positive real
rarts. Therefore. in such a case. the system is not stable. If we are interested in only
the absolute stability. there 1s no need to follow the procedure further. WNWote that
all the coefficients must be positive. This is a necessary condition. as may be seen
from the following argument: A polyvnomial in 5 having real coefficients can al-
wavs be factored into linear and quadratic factors. such as (s + a) and
(52 + bs + c). where a. b. and ¢ are real. The linear factors wvield real roots and
the quadratic factors vield complex-conjugate roots of the polynomial. The factor
(52 + bs + C)' wvields roots having negative real parts only if » and ¢ are both pos-
itive. For all roots to have negative real parts. the constants . . c. and so on.in all
factors must be positive. The product of any number of linear and quadratic factors
containing only positive coefficients always wvields a polvnomial with positive
coefficients. It is important to note that the condition that all the coefficients be
positive is not sufficient to assure stability. The necessary but mot sufficient
condition for stability is that the coefficients of Equation (5—61) all be present and
all have a positive sign. (If all «°s are negative, they can be made positive by
multiplving both sides of the equation by —1.)

3. If all coefficients are positive. arrange the coefficients of the polynomial in rows
and columns according to the following pattern:

— = e e
s g > Xy g .- sTTF oy <2 C3 4 .- S1 1 =
st 1 a4 a5 s  d .- st dy d> ds da - .- SO T
st 2 By, bs by s ... : : : = £

The process of forming rows continues until we run out of elements. ( The total
number of rows is sz +1). The coefficients »,. . Hs. and so on. are evaluated as follows:
A, ed> — o Xy — Aok agqa — aoa
By, — 12a103 b 14a1 ofs by — 16a107
The evaluation of the A's is continued until the remaining ones are all zero. The same
pPattern of cross—-multiplying the coefficients of the two previous rows is followed in
evaluating the c’s. d’s. e’s. and so on. That is.
by — a5 . byas — «aq.bs _ b,a; — a,b, - - -

<1 P2 €z — 2% <= F2

c b, — Byoo . _ by — bycos - - -
<1 = <

This process is continued until the rmth Tow has been completed. The complete arrav of

coefficients is triangular. Wote that in developing the array an entire row may be divid-

ed or multiplied by a positive mnumber in order to simplify the subseqguent numerical

calculation without altering the stability conclusion.

Routh’s stability criterion states that the nmnumber of roots of Equation (5—61) with
positive real parts is equal to the number of changes in sign of the coefficients of the first
column of the arrawv. It should be noted that the exact values of the terms in the first col-
umn need not be known: instead. only the signs are needed. The necessary and suffi-
cient condition that all roots of Equation (53—61) lie in the left-half s plane is that all the
coefficients of Equation (5—61) be positive and all terms in the first column of the arrawv
have positive signs.

EXAMPLE 5—11]

Let us apply Routh’s stability criterion to the following third-order polyvnomial:

and =

s + a,;5° + a,s + a; = 0
where all the coefflicients are positive numbers. The array of coefficients becomes
3
s Ao as . a, > — dgds 59 s
5 aq as & ,
The condition that all roots have negative real parts is given by aydz = dpds
(EXAMPLE 5—12 ]
Consider the following polvnomaial: 5% 4+ 257 + 357 + 45 + 5 =0

Let us follow the procedure just presented and construct the array of coefficients. (The first
two rows can be obtained directly from the given polynomial. The remaining terms are

obtained from these. If any coefficients are missing. thev mav be replaced by zeros in
the array.) s 1 3 5 s 1 3 s
53 2 4 O 52 =2 & o The second row is divided
1 2 O by 2.
52 1 s 52 1 s
51 — 6 st — 3
59 s 59 s

In this example. the number of changes in sign of the coefficients in the first column is 2. This
means that there are two roots with positive real parts. Wote that the result is unchanged when the
coefficients of any row are multiplied or divided by a positive number in order to simplify the
computation.
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(Special Cases_] If a first-column term in any row is zero. but the remaining terms
are not zero or there is Nno remaining term. then the zero term is replaced by a very small
positive number € and the rest of the array is evaluated. For example. consider the

following equation: &2 e gLl g ~fI20-— D (5—62)
The array of coefficients is

=3 1 1 52 2 2 st O ~=e 0 2

If the sign of the coefficient above the zero (e€) is the same as that below it. it indicates
that there are a pair of imaginary roots. Actuallyv. Eq (5—62) has two roots at § =— + j_

If. howewver. the sign of the coefficient above the zero (€) is opposite that below it. it
indicates that there is one sign change. For example. for the equation

57 — 35 + 2 = (s — 1)HN(s + 2) = O
the array of coefficients is One sign change: S~ 1 — 3
' ) ( & = e 2
= st —3 — =
One sign change: <\\j_ <O >

There are two sign changes of the coefficients in the first column. So there are two roots
in the right-half s plane. This agrees with the correct result indicated by the factored
form of the polyvynomial equation.

If all the coefficients in any derived row are Zzero. it indicates that there are roots of
eqgual magnitude Ilyving radially opposite in the s plane—that is. two real roots with egual
magnitudes and opposite signs and/Jor two conjugate imaginary roots. In such a case. the
evaluation of the rest of the array can be continued by forming an auxiliary polyvnormi-
al with the coefficients of the last row and bwv using the coefficients of the derivative of
this polynomial in the next row. Such roots with equal magnitudes and lyving radially op-
posite in the s plane can be found by solving the auxiliary polynomial, which is alwawvs
even. For a 2r-degree auxiliary polyvnomial. there are r pairs of egual and opposite tToOots.
For example. consider the following equation:

57 + 25% + 2467 + A48T — 255 — S0 = O
o i s 1 24 — 25
The array of coefficients is S: 2 48 — S50 <«~— AAauxiliarwy polynomial P (s)
5 (8] O

The terms in the 57 row are all zero. (Wote that such a case occurs only in an odd-
numbered row.) The auxiliary polyvnomial is then formed from the coefficients of the s
row. The auxiliary polynomial P(s) is P(s) = 254 + 4852 — S0

which indicates that there are two pairs of roots of egual magnitude and opposite sign
(that is, two real roots with the same magnitude but opposite signs or two complex-
conjugate roots on the imaginary axis). These pairs are obtained by solving the auxiliary

rolynomial equation P (s) = O. The derivative of P (s) with respect to 5 is
L (S) 8s> + 96s

The terms in the 52 row are replaced by the coefficients of the last equation—that is.
S8 and 96. The arrayv of coefficients then becomes

s 1 24 — 25

s+ 2 48 — S0 L

P = o6 <«— Coefficients of P (s) /ds

52 24 — S0

st 112.7 (8]

59 — S50

We see that there is one change in sign in the first column of the new arrav. Thus. the orig-
inal equation has one root with a positive real part. By solving for roots of the auxiliarwy
prolvnomial egquation. 2s* + 4852 — SO O

we obtain s = 1. 52 = —25 or K =+=1. s = =ji5

These two pairs of roots of P(s) are a part of the roots of the original equation. As a
matter of fact. the original equation can be written in factored form as follows:

(s + 1)(s — 1)(s + j5)(s — jS)I(s + 2) = O
Clearly. the original equation has one root with a positive real part.

(Relative Stability Analysis.] Routh’s stability criterion provides the answer to
the gquestion of absolute stability. This, in many practical cases. is not sufficient. We usu-
ally require information about the relative stability of the system. A useful approach
for examining relative stability is to shift the s-plane axis and apply Routh’s stability
criterion. That is., we substitute s — 5 — o (o = constant)
into the characteristic equation of the syvstem. write the polynomial in terms of s; and
apply Routh’s stability criterion to the new polynomial in §. The number of changes of
sign in the first column of the array developed for the polyvnomial in § is equal to the num-
ber of roots that are located to the right of the vertical line s = —o . Thus, this test reveals
the number of roots that lie to the right of the vertical line s — —o.

(Application of Routh’s Stability Criterion to Control-System Analysis.] Routh’s
stability criterion is of limited usefulness in linear control-system analvsis, mainly because
it does not suggest how to improve relative stability or how to stabilize an unstable
system. It is possible. however. to determine the effects of changing one or two
parameters of a system by examining the values that cause instability. In the following.
we shall consider the problem of determining the stability range of a parameter value.

Consider the system shown in Figure 5—35. Let us determine the range of K for

stability. The closed-loop transfer function is C(s) y <
R(s) s(s7 + s + 1)s + 2) + K
The characteristic equation is s + 357 + 357 + 25 + K = 0O
The array of coefficients becomes st 1 3 K
53 3 2 0 52 z K st 2— 2K s° K
R(s) g I C(s)
Figure 5-35 S(s2+5+ 1) (s +2)
Control system. *

For stability. K must be positive. and all coefficients in the first column must be positive.
Therefore. a4 K — 0O
When K = 43, the svstem becomes oscillatory and. mathematically. the oscillation is
sustained at constant amplitude.

Note that the ranges of design parameters that lead to stability may be determined

by use of Routh’s stability criterion.
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5-7 EFFECTS OF INTEGRAL AND DERIVATIVE CONTROL

ACTIONS ON SYSTEM PERFORMANCE
In this section. we shall investigate the effects of integral and derivative control actions
on the system performance. Here we shall consider only simple systems. so that the
effects of integral and derivative control actions on system performance can be clearly
seen.

[Integral Control Action. | In the proportional control of a plant whose transfer
function does not possess an integrator 1/s. there is a steadv-state error, or offset. in the
response to a step input. Such an offset can be eliminated if the integral control action
is included in the controller.

In the integral control of a plant. the control signal—the output signal from the
controller—at any instant is the arca under the actuating-error-signal curve up to that
instant. The control signal z(7r) can have a nonzero value when the actuating error signal
e(r) is zero. as shown in Figure 5—36(a). This is impossible in the case of the proportional
controller. since a nonzero control signal requires a nonzero actuating error signal.
(A monzero actuating error signal at steady state means that there is an offset.) Figure
5—36(b) shows the curve e(r) versus r and the corresponding curve 2« (7) versus r when the
controller is of the proportional tvpe.

Note that integral control action. while removing offset or steady-state error. may lead
to oscillatory response of slowly decreasing amplitude or even increasing amplitude.
both of which are usually undesirable.

Figure 536 (a) Plots of e(z) and () D4 () e (b)
curves showing nonzero control signal \

when actuating error signalis zero (integral

control): (b) plots of e(f) and () curves 0 r 0 S— ¢

showing zero control signal when the u(r) g u(r)
actuating error signalis zero (proportional /\/\
control). ——

I 0 P
i R(s) E(s) 1 C(s)
Figure 5—37 . & :
Proportional 2 = l Ts + 1
~ roporuaona
control f controller Plant
system.

(Proportional Control of Systems. We shall show that the proportional control
of a syvstem without an integrator will result in a steadvy-state error with a step input. We
shall then show that such an error can be eliminated if integral control action is included
in the controller.

Consider the system shown in Figure 5—37. L.et us obtain the steadyv-state error in the

unit-step response of the system. Define G(s) = K
Since £(s) _ R(s) — C(s) _ , _ €(s) _ s + 1
R(s) R(s) R(s) 1 + G(s) ]
the error E(s5) is given bw E(s) = ﬁ;)— R(s) = K/(;*_5'+1) R(s)
For unit-step input R(s)=1/s. we have E(s)=— TSTi 1+ i = 1?
. s s o s + 1 _ 1
The steady-state error is Ess — ,ll,rz{.e(t) = ;E;I})SE(.S‘) = ;E}I}) 7= 1+ 1 + = = < = 1

Such a system without an iIntegrator in the feedforward path alwawvs has a steadvyv-state
error in the step response. Such a steady-state error is called an offset. Figure 5—38 shows
the unit-step response and the offset.

C(n[“ Of‘f‘set* A
Figure 5-39 R(s) E)[ K 1 C(s)
Figure 538 ? Inteeral s >
Unit-step gre al Ll
response control 4
and offset. system.
0 :

(Integral Control of Systems.] Consider the system shown in Figure 5—-39. The
controller is an integral controller. The Closed—(lo)op transtfer function of the system is
(s <
E(s) _R(s)—C(s)__ s(Ts + 1) R(s) s(s + 1) + K
R(s) R({s) Cos(Ts +— 1) + K
Since the system is stable. the steadv-state error for the unit-step response can be
obtained by applying the final-value theorem. as follows:
e = lim sE(s)= lim > ('s + 1) 1
ss 5—>0 50 T'52 + 5 + K &
Integral control of the syvstem thus eliminates the steadyv-state error in the response to
the step input. This is an important improvement over the proportional control alone.
which gives offset.

Hence

= 0

([Response to Torque Disturbances (Proportional Control).] I.et us investigate
the effect of a torque disturbance occurring at the load element. Consider the system
shown in Figure 5—40. The proportional controller delivers torque 7 to position the load
element., which consists of moment of inertia and viscous friction. Torgue disturbance is
denoted by /.

Assuming that the reference input is zero or R(s) = O, the transfer function between
C(s) and D(s) is given by C(s) _ 1
D(s) Js7 + by + K,
o
R £ T 1 <

Figure 5—40 *@*‘ Ky pP— S(Js + B)

Control system with *

a torque disturbance.
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Hence E(s)y  _ C(s) . _ 1
D(s) D(s) Js7 + bs + K,
The steady-state error due to a step disturbance t?rque of magnitude 7, is given by
— 1 - —5
€ = HmsE() = lim ga—g oo R, 8 — — &K
At steady state. the proportional controller provides the torgque —7,., which is equal in
magnitude but opposite in sign to the disturbance torque 7,;. The steadyv-state output due

to the step disturbance torque is - _ Ty
Css — Ess — Kp

The steadyv-state error can be reduced by increasing the value of the gain K ,. Increasing
this value. howevwver, will cause the system response to be more oscillatory.

(Response to Torque Disturbances (Proportional-Plus-Integral Control).] To
climinate offset due to torque disturbance. the proportional controller may be replaced

by a proportional-plus-integral controller.
If integral control action is added to the controller. then. as long as there is an error

signal. a torque is developed by the controller to reduce this error. provided the control

syvstem is a stable one.
Figure 5—41 shows the proportional-plus-integral control of the load element.

consisting of moment of inertia and wviscous friction.
The closed-loop transfer function between C(s) and /2(s) is
5

(s)
D(s) Ts= + bs® + K,s + K,/ T;
In the absence of the reference input. or »(r) — O. the error signal is obtained from
E(s) = = D(s)

Js> + bs® + K,s +Kp,/T;

. JRE—
1 ~Figure 5-42 Integral control of a R_;O®> K(r @, ﬁ ¢
U O lload element consisting of moment 0 S S5 +5)

of inertia and viscous friction.

Figure 5-41 Proportional-plus- — p-g~f
integral control of a load element —»@»
consisting of moment of inertia ‘

and viscous friction.

If this control system is stable—that is. if the roots of the characteristic equation
Js57 + bs? + K,s + Ky,/T,—= 0O

have negative real parts—then the steady-state error in the response to a unit-step
disturbance torque can be obtained by applving the final-value theorem as follows:
2
e, = limsE(s) = 1i — 1
ss msE(S) = lim , 5+ 5= & K,s + K,/ T: S o

Thus steadv-state error to the step disturbance torque can be eliminated if the controller
is of the proportional-plus-integral tyvpe.

Note that the integral control action added to the proportional controller has
converted the originally second-order syvstem to a third-order one. Hence the control
system may become unstable for a large value of K. since the roots of the characteristic
equation may have positive real parts. (The second-order system is always stable if the
coefficients in the system differential equation are all positive.)

It is important to point out that it the controller were an integral controller, as in
Figure 5—42. then the svstem alwavs becomes unstable. because the characteristic
equation Js52 + bs? + K — O
will have roots with positive real parts. Such an unstable system cannot be used in

practice. . ) N i
Note that in the svstem of Figure 5—41 the proportional control action tends to

stabilize the system. while the integral control action tends to eliminate or reduce steady-
state error in response to various inputs.

(Derivative Control Action.] Derivative control action. when added to a
proportional controller. provides a means of obtaining a controller with high
sensitivity. An advantage of using derivative control action is that it responds to the
rate of change of the actuating error and can produce a significant correction before
the magnitude of the actuating error becomes too large. Derivative control thus
anticipates the actuating error. initiates an early corrective action. and tends to

increase the stability of the system.

(1)
Figure 5—43 (a) Proportional fl(_f_) K 1 R | ®)
control of system with inertia 7 JSs? 1 /\ /\ /
load: (b) response to a (a)
unit-step input. + 0 / \/ \/r

Although derivative control does not affect the steadvyv-state error directly. it adds
damping to the svstem and thus permits the use of a larger value of the gain K. which
will result in an improvement in the steady-state accuracy.

Because derivative control operates on the rate of change of the actuating error and
not the actuating error itself. this mode is never used alone. It is alwavyvs used in combi-
nation with proportional or proportional-plus-integral control action.

(Proportional Control of Systems with Inertia Load. Before we discuss further
the effect of derivative control action on system performance. we shall consider the

proportional control of an inertia load.
Consider the system shown in Figure 5—43(a). The closed-loop transfer function is

obtained as < (s) _ Ky
R(s) ST+ K,
Since the roots of the characteristic equation g5 + K, = 0O

are imaginary, the response to a unit-step input continues to oscillate indefinitely. as

shown in Figure 5—43(b).
Control systems exhibiting such response characteristics are not desirable. We shall
see that the addition of derivative control will stabilize the syvstem.
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(Proportional-Plus-Derivative Control of a System with Inertia Load.] Let us
modify the proportional controller to a proportional-plus-derivative controller whose
transfer function is Kp(l —+ T, s)- The torque developed by the controller is proportional
to Kp(e —+ Tdé). Derivative control is essentially anticipatory. measures the instantaneous
error wvelocity. and predicts the large overshoot ahead of time and produces an
appropriate counteraction before too large an overshoot occurs.

P r1;‘

R(s) 1 Cis) —— e (b)
»—@ Kp(]—O—Td\s} h—— ﬁ
oy
(a) ‘.
r

0
Figure 5—44 (a) Proportional-plus-derivative control of a system with
inertia load: (b) response to a unit-step input.

Consider the system shown in Figure 5—44(a). The closed-loop transfer function is

given by C(s) __ Kp(l + Tyus)
R(s) S5 + K,T,s + K,
The characteristic equation JsZ —+ K,Tys + K, = 0O

now has two roots with negative real parts for positive values of J, K, ., and 7,;. Thus
derivative control introduces a damping effect. A typical response curve c(7) to a unit-
step input is shown in Figure 5—44(b). Clearly, the response curve shows a marked
improvement over the original response curve shown in Figure 5—46(b).

(Proportional-Plus-Derivative Control of Second-Order Systems.] A compromise
between acceptable transient-response behavior and acceptable steadv-state behavior may
be achieved by use of proportional-plus-derivative control action.

Consider the system shown in Figure 5—45. The closed-loop transfer function is

C(s) K, + K;s
R(s) Js? + (B + Ky)s + K, 5
The steady-state error for a unit-ramp input is Css — P
The characteristic equationis Js? + (B + K,)s + K, = 0O r

R(s)@ K X 1 C(s)
——— + K g8
Figure 5—45 z s(Js + B) I

Control system. ‘i

The effective damping coefficient of this system is thus B + K, rather than B. Since the
damping ratio & of this system is e B + K,

2N K S
it is possible to make both the steadyv-state error e, for a ramp input and the maximum
overshoot for a step input small by making B small. K, large. and K, large enough so that

& is between O.4 and O.7.

[5—8 STEADY-STATE ERRORS IN UNITY-FEEDBACK
CONTROL SYSTEMS

Errors in a control system can be attributed to many factors. Changes in the reference
input will cause unavoidable errors during transient periods and may also cause steadvy-
state errors. Imperfections in the system components, such as static friction. backlash. and
amplifier drift. as well as aging or deterioration. will cause errors at steady state. In this
section. howewver. we shall not discuss errors due to imperfections in the system com-
pronents. Rather, we shall investigate a type of steadyv-state error that is caused by the
incapability of a system to follow particular tvpes of inputs.

Any physical control system inherently suffers steady-state error in response to
certain types of inputs. A system may have no steady-state error to a step input., but the
same system may exhibit nonzero steady-state error to a ramp input. ( The only way we
may be able to eliminate this error is to modify the system structure.) Whether a given
system will exhibit steadv-state error for a given type of input depends on the type of
open-loop transfer function of the system. to be discussed in what follows.

(Classification of Control Systems.] Control systems may be classified according
to their ability to follow step inputs, ramp inputs, parabolic inputs. and so on. This is a
reasonable classification scheme. because actual inputs may frequently be considered
combinations of such inputs. The magnitudes of the steady-state errors due to these
individual inputs are indicative of the goodness of the system.

Consider the unityv-feedback control system with the following open-loop transfer
function G (s5): Gl K(T,s + 1 Tps + 1)---(T,,5s + 1)

s™(Ths + 175 + 1) ---(Tps + 1)

It involves the term sV in the denominator. representing a pole of multiplicity &V at the
origin. The present classification scheme is based on the number of integrations indicated
bv the open-loop transfer function. A system is called tyvpe O.type l.type 2.....if N = 0O,
N = 1. N = 2,....respectively. Note that this classification is different from that of the
order of a system. As the type number is increased. accuracy is improved: however,
increasing the type number aggravates the stability problem. A compromise between
steady-state accuracy and relative stability is always necessary.

We shall see later that. if G (s5) is written so that each term in the numerator and
denominator. except the term s, approaches unity as s approaches zero. then the open-
loop gain K is directly related to the steady-state error.

R(s) E(s) C(s)
—— G(5)

Figure 5—46
Control system. A
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[(Steady-State Errors)) Consider the system shown in Figure 5—46. The closed-loop

transfer function is C(s) __ (5
R(s) 1 + G (s)
The transfer function between the error signal e(r) and the input signal »(r) is
E(s)y 1 — C(s) _ 1
R(s) R(s) 1 + G(s)

where the error e(r) is the difference between the input signal and the output signal.
The final-value theorem prowvides a convenient wawy to find the steadv-state

performance of a stable system. Since E(s5) is the (s S W
steady-state error is ess—1lim e(r)=lim sFE(s) = lim . SR(s) _ €= s ) R
3 =y o 5—>0 s——>o0 1 —+ (5)

The static error constants defined in the following are figures of merit of control systems.
The higher the constants. the smmaller the steadyv-state error. In a given system. the out-
prput may be the position. velocity., pressure. temperature., or the like. The phwvsical form
of the output. howewver., is immaterial to the present analvsis. Therefore., in what follows,
we shall call the output ““position.” the rate of change of the output ““velocity.,” and so on.
This means that in a temperature control system ““position”™ represents the output term-
perature., ““velocity™ represents the rate of change of the output temperature., and so on.

(Static Position Error Constant Kp-] The steadyv-state error of the system for a

unit-step input is EE— = el 1.
Css m g o=y = 1 + G (0)
The static position error constant K, is defined by K, — }_il‘l}} G (s5) < (O) )
Thus, steady-state error in terms of static position error constant &K, is Ess — ﬁ
For a tvpe O system. K. = lim K(Ta‘g 4 1}(TDS - 1) e K
P s—o (Tys + 1)%Tzs —+ 1)---

= . 7,5 + 1 WTps + 1)---

For a tvpe 1 or higher system. K., — lim Z D = oo for N = 1
a P & ¥ P s—o0 sY(Tys + 1)Tos + 1)--- 2

Hence. for a type O system. the static position error constant K, is finite. while for a type
1 or higher system. K, is infinite.
For a unit-step input. the steadv-state error €, may be summarized as follows:
1
eSS

T o & » for type O systems e = 0O, for type 1 or higher systems

From the foregoing analysis. it is seen that the response of a feedback control system
to a step input involves a steadyv-state error if there is no integration in the feedforward
path. (If small errors for step inputs can be tolerated, then a type O system may be
permissible. provided that the gain K is sufficiently large. If the gain K is too large. how-
ever. it is difficult to obtain reasonable relative stability.) If zero steady-state error for
a step input is desired. the tyvpe of the system must be one or higher.

(Static Velocity Error Constant K,.] The steady-state error of the system with a

unit-ramp input is given by - im0 iy 1
es = lm 1T —&my 52— IMsaem™
The static velocity error constant K, is defined by K, = lim sG(5)

. . . . . 1

Thus, steady-state error in terms of static velocity error constant K, is given by €ss = g
The term velociry error is used here to express the steady-state error for a ramp

input. The dimension of the velocity error is the same as the system error. That is. velocity

error is not an error in velocity, but it is an error in position due to a ramp input.
For a type O system. sK(Tys + 1)(Tps + 1) ---

Ke =M ~7rs + )(Tos + 1)--- 9
() & ()
c(r)
Figure S—47
Response of ()
a tvpe 1
unityv-feed
back svstem
to a ramp r
input. O
F. a ty 1 svst . — T sK(T,s + 107}, s + 1)---
or atype lsystem. K, = Hm T (Ais ¥ D(Ies ¥ D - K
For a tvype 2 or higher system, K”:lirno SK(THSJfl)(TbSJﬁl) — o, for W = 2
& —>

sM(Tys+1LW(Tos+1) ---
The steady-state error e, for the unit-ramp input can be summarized as follows:
Css T o T OO, for tvpe O systems Coy — % = 7 - for type 1 systems
g 2
Css T O T O, for type 2 or higher systems

The foregoing analysis irifdicates that a type O system is incapable of following a ramp
input in the steady state. The type 1 system with unity feedback can follow the ramyp input
with a finite error. In steady-state operation, the output velocity is exactly the same as the
input velocity, but there is a positional error. This error is proportional to the velocity of
the input and is inversely proportional to the gain K. Figure 5—47 shows an example of the
response of a type 1 system with unity feedback to a ramp input. The tvpe 2 or higher
system can follow a ramp input with zero error at steady state.

(Static Acceleration Error Constant K_,.] The steady-state error of the system
with a unit-parabolic input (acceleration input). which is defined by
2

() = 12_’ forr = 0O = 0, forr <= O
N - . 1 1
is given by e — lim ——= L 1
ss s—0 1 —+ G(S) 53 ;11‘[10526(5)
The static acceleration error constant K is defined by the equation K, = }1_1;1}3 s2G(s)
The steady-state error is then e. =1/K,

Note that the acceleration error. the steady-state error due to a parabolic input. is an
error in position.
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The values of K, are obtained as( follows:)( ) g
. K (Tys + 1) (Tps + 1)--- e()
For a type 0 system, = s a b =
oratypeUsystem. K, = im0 1)(Tos + 1) --- 0 -
E e 1 e K i SE(Tus + )(Tps + 1) Figure5-48 )
or a type 1 system. a — lim s(T1s + 1)(Tes + 1) Rgsponse
2K (Tys + 1)(Tps + 1) of type 2 0
For a type 2 system, =i a o = unity-feed
or a type 2 system K, }1_1)1-(1] Sz(Tl.S‘ F 1)(Tzs F 1) K e
. ) e PR (Tys 1) (Tps+1) - for N = 3 system to
For type 3 or higher system, Ka—£1_1>110 SN(Ty s +1)(T5s +1) =00, lor =3 parabolic
Thus,steady-state error forunit parabolic inputis e, =1/K, for type 2 systqinpul.
€= 00, for type O and type 1 systems ¢, = 0, for type 3 or higher systemsg 0 "t

Note that both tvpe O and tvpe 1 systems are incapable of following a parabolic input
in the steady state. The type 2 system with unity feedback can follow a parabolic input
with a finite error signal. Figure 5—48 shows an example of the response of a tyvpe 2 sys-—
tem with unity feedback to a parabolic input. The tyvpe 3 or higher swvstem with unity
feedback follows a parabolic input with zero error at steady state.

EBummary.] Table 5—1 summarizes the steadv-state errors for type O, type 1. and
tvpe 2 systems when they are subjected to various inputs. The finite values for steadw-
state errors appear on the diagonal line. Above the diagonal. the steadyv-state errors are
infinity: below the diagonal. they are zero.

Table S—1 Steady-State Error in Terms of Gain K
Step Input Ramp Input AMAcceleration Input
r(r) = 1 () — & r(r) — %t2
Tvpe O system 1 oo oo
1 + K
Tvpe 1 system (o] % oo
Ty 2 syst o (e} 1
vpe swvsternm A

Remember that the terms positiort error, velociry error, and acceleratiorn error TNean
steadv-state deviations in the output position. A finite velocity error implies that after
transients have died out. the input and output move at the same velocity but have a
finite position difference.

The error constants K,. K, . and K, describe the ability of a unity-feedback system
to reduce or eliminate steady-state error. Therefore. they are indicative of the steady-state
prerformance. It is generally desirable to increase the error constants. while maintaining
the transient response within an acceptable range. It is noted that to improve the steady-
state performance we can increase the type of the system by adding an integrator or
integrators to the feedforward path. This, howewver., introduces an additional stability
problem. The design of a satisfactory system with more than two integrators in series in
the feedforward path is generally not easy.

3k 3k 3k 3k 3k ok 3k 3k %k 3k ok sk 3k 5k ok 3k 3k 3k ok ok ok 3k 3k ok ok %k 3k 5k ok sk 3k 3k 3k 3k %k 3k 3k ok ok 3k 3k ok ok %k 3k 3k 3k %k sk 3k 3k 5k 3k %k 3k 3k 5k ok 3k 3k 5k ok %k 3k 3k 5k ok %k 3k 3k 3k %k %k 3%k 3k %k %k %k 3%k %k %k %k 3%k %k %k %k %k 3k %k %k k

(EXAMPLE PROBLEMS AND SOLUTIONS )

n the system of Figure 5—49, x(f) is the input displacement and &(r) is the output angular
displacement. Assume that the masses involved are negligibly small and that all motions are
restricted to be small: therefore. the system can be considered linear. The initial conditions for x
and O are zeros, or x(0—) = 0 and 6(0—) = 0. Show that this system is a differentiating element.
Then obtain the response 8(f) when x(r) is a unit-step input.

Solution. The equation for the system is b(x‘ -~ }'_,9) — KELO or 1.0 + % e = x

The Laplace transform of this last equation. using zero initial conditions. gives

I~ - s (s) _ 1 5 Thus system is a differentiating system.
(Ls+E L)O(s)=sX(s) Andso Fis—] 0 rps .
For the unit-step input X (s) = 1/s. the output G(s) becomes @(s) = LLW
The inverse Laplace transform of &(s) gives g(r) = %e—(kﬂ?)f

X(f)A ¢
X p El:l Figure 5-50 I Sl

]_J
L

Figure 5-49 L Unit-step input and
Mecthanical —C—3%=——-—-—-—-—=3F|the response of the
system. — .
’ L o mechanical system

k= & No friction _ —
mi?: 0 t 0 t
Note that if the value of k/b is large. the response 8(r) approaches a pulse signal. as shown in
Ficure 5-50.

“|shown in Fig5-49.

Gear trains are often used in servo systems to reduce speed. to magnify torque. or to obtain the
most efficient power transfer by matching the driving member to the given load.

Consider the gear-train system shown in Figure 5—51. In this system. a load is driven by a
motor through the gear train. Assuming that the stiffness of the shafts of the gear train is infinite
(there is neither backlash nor elastic deformation) and that the number of teeth on each gear is
proportional to the radius of the gear., obtain the equivalent moment of inertia and equivalent
viscous-friction coefficient referred to the motor shatt and referred to the load shaft.

In Figure 5—51 the numbers of teeth on gears 1.2,3, and 4 are N, N>, N5, and N, respectively.
The angular displacements of shafts. 1.2, and 3 are 6.6, and 85 respectively. Thus. 0, /68, = N, /N>
and 85/68, = N3/ N,. The moment of inertia and viscous-friction coefficient of each gear-train
component are denoted by J,. b,:J>5, by and J;, b3: respectively. (/3 and b; include the moment of
inertia and friction of the load.)
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~ J1. by
S
T~ =% *-rg N3
1 =
Input torque 1
from motor - Gear 3
Tz (1) -
— Shaft 3
- S, b -
Figure 5—-51 - = = =
Gear-train — e j
system. =% ‘*33 - Load
_— N4 ‘tor’que TL r)
For this gear-train system. we can obtain the following equations: For shaft 1.
Je, + b,e, + T, =T, (5—63)
where 7, is the torque developed by the motor and 7)) is the load torgue on gear 1 due to the rest
of the gear train. For shaft 2, S0, + b6, + T3 = T, (5—064)

where 75 is the torque transmitted to gear 2 and 73 is the load torque on gear 3 due to the rest of
the gear train. Since the work done by gear 1 is equal to that of gear 2.

7:6, = T>65 or T — T3 N/ WV,
If WV; /N> < 1, the gear ratio reduces the speed as well as magnifies the torque. For shaft 3.

J36053 + B30 + Ty = T, (5—65)
where T, is the load torque and 7, is the torque transmitted to gear 4. T; and T, are related by
T, = T5 Ny N5 and @5 and &, are related by Oy = 0N/ Ny, = 0, (TN, /INS DINS /NG
Eliminating 7;. 75. 75, and 7, from Equations (5—63). (5—64). and (5—65) vields

T8y 5,0+ (NGNS (Fas+ 5265)+(INL S INo XN NG N T8 5 + 5305 + T,) = T,

Eliminating &, and &; from this last equation and writing the resulting equation in terms of ¢; and

its time derivatives, we obtain
) (7)) (R)E]o (R (R

[j1+( )J2+( )( )13]91+[b1+( )TL— S, EEE

Thus, the equivalent moment of inertia and wviscous-friction coefficient of the gear train referred

to shaft 1 are given. respectively. by
N1
Breq — H1 + bz —+ b,,

5+ (R () (e

Similarly, the equrva!ent moment of 1nert1'1 and viscous-friction Coeffl(:lent of the ge'}r train referred
to the load shaft (shaft 3) are given. respectively. by

s GO (D oo - () (3
%) e

The relationship between J .4 and J;.4 1s thus Ty — ( ) )

and that between b, and Da.q is Brog =
The effect of J, and J; on an equivalent moment of inertia is determlned b} the gear ratios Ny /NS
and N5 /N,. For speed-reducing gear trains. the ratios. NV, /N, and N5 /N, are usually less than unity.
If N /N> = 1 and N3 /Ny << 1, then the effect of /> and J; on the equivalent moment of inertia J1eq
is negligible. Similar comments apply to the equivalent viscous-friction coetfticient b, .4 of the gear
train. In terms of the equivalent moment of inertia J,.4 and equivalent viscous-friction coefficient
bicq- Equation (5—66) can be 51r11p11tled to give NI N,
J1eqO1 + B1oq01 +~ nT, = T, where o= No N,
When the system shown in Figure 5—52(a) is subjected to a unit-step input. the system output
responds as shown in Figure 5—52(b). Determine the values of KX and 7 from the response curve.
The maximum overshoot of 25.49 corresponds to £ = 0.4. From the response curve

we have = 3 Consequently. ¢, = I = = = L = 3
z = e Wy o N — B o N L — O
Vi r Y
(1)
e o [ PN —
S(Ts + 1) Iy o

(a) *

Figure 552
(a) Closed-loop

system: (b) unit-step (b)
response curve. 5] 3 t
It follows that o, 1.14
i ; . C(s)y _ K from which @, — /&, 28 @, = -
From the block diagram we have R(s) — 757 + 5 + K | 1\ T A
Therefore. the values of 77 and K are determined as T = SFea,., . 2 < 04 = 1.14 1.09
K = 2T = 1.14% =< 1.09 = 1.42

[A=5—.]
Determine the values of K and k of the closed-loop system shown in Figure 5—53 so that the maximum
overshoot in unit-step response is 25% and the peak time is 2 sec. Assume that J = 1 kg-m?~.

The closed-loop transfer function is }%‘((;)) = 732 ¢ K)T;{ks e

; ituti — -m?2 i is 1z i e he ) _ K
By substituting J 1 kg-m~ into this last equation. we have R(s) 2 T Khks T K

Note that in this problem w,=VK . 2{w, = Kk The maximum overshoot M, is M, — e TNV I1=27

which is specified as 25%. Hence e /Y1 ¢= .25 from which _ﬁZISSG

C(s)

R(s)

Figure 5—53 IT
Closed-loop f

system.
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or ¢ = 0.404 The peak time 7, is specified as 2 sec. And so 7, = (;ld = 2 Or wy; = 1.57

Then the undamped natural frequency w,, is wr,, = D = 1.57 = 1.72
P 9 3 1 — 22 1 — 0.4042
Therefore. we obtain K= w2 —1.72°—2.95 N-m ik :zg;; -2 < 0. 420“9‘5>< 1.72 _ 6471 sec

Figure 5—54(a) shows a mechanical vibratory system. When 2 1b of force (step input) is applied to
the system. the mass oscillates. as shown in Figure 5—54(b). Determine 1, b. and k of the system
from this response curve. The displacement x is measured from the equilibrium position.

The transfer function of this system is X(S) = -
> bt X () > P(s) ms> +— bs + k
: _ 2 we obtain s) =
Since P(s) = 5 s(ms® +~ bs + k) >
It follows that the steady-state value of x is  x(oc) = limsX (s) = = = 0.1 ft
== (5
Figure 554 = (a) o1t /L_<).0095 f
(a) Mechanical | P e A
vibratory system: — (2-1b force) I
(b)step-response fl_ (b
curve. |
s - l l l l
(8] 1 2 3 4 5 I3

Hence £=20 Iby/ft Note that M, = 9.5% corresponds to £= 0.6. The peak time 7, is given by
. T . er . - , : _
05 = g N1 — 2 = e The experimental curve shows that 7, 2 sec. Therefore,
3.14 : e : e 2 - —16
w, =58 196 rad/sec Since wl=k/m=20/m. we obtain m 2 1.29062_5'2 slugs =167 1b
(Note that 1 slug = 1 Ibgsec?/It.) Then & is determined from

Sy, = B o B — D ame— DS 06. 2 106 552 — 192 16/ sec
- C(s) w’

Fad

Consider the unit-step response of the second-order system Ris] — 5= = Dfo = =0
The amplitude of the exponentially damped sinusoid changes as a geometric series. At time
t = fp, = w/wg. the amplitude is equal to e (/=7 After one oscillation., or at
r = zp + 27 /wy; = 37 /wy. the amplitude is equal to e_{“’f“’d)"’”' after another cycle of oscillation. the
amplitude is e lo/@dST The logarithm of the ratio of successive amplitudes is called the logarithiric
decrement. Determine the logarithmic decrement for this second-order system. Describe a method

for experimental determination of the damping ratio from the rate of decay of the oscillation.
[Bolution.] Let us define the amplitude of the output oscillation at # = 7; to be x,;. where

t;, =1, + (i — 1)T(T = period of oscillation). The amplitude ratio per one perlod of damped
oscillation is ﬁi e_(”:“‘d:’ eofwaym _ G2ew/~1—¢2 Thus, logarithmic decrement Sfln 2 — %
o f g |3 - -

It is a function onl} of the damping ratio £. Thus. the damping ratio £ can be determined by use

of the logarithmic. decrement.
In the experimental determination of the damping ratio £ from the rate of decay of the oscil-

lation. we measure the amplitude x, atf = f, and amplitude x,, att = r, + (2 — 1)7. Note that
it is necessary to choose n large enough so that the ratio x; /x,, is not near unity. Then
X1 _ pn—1)20mNT—E7
xn
x 2T X
or Insl = (n — 1) ﬁ Hence £ :”*1_17(111?;) /‘\4"47T2+[n171 (m xl)]z
In the system shown in Figure 5—55, the numerical values of mz, b, and k are given as rme = 1 Kg.
b = 2 N-sec/m. and £ = 100 N,/m. The mass is displaced 0.05 m and released without initial ve-

locity. Find the frequency observed in the vibration. In addition. find the amplitude four cycles later.
The displacement x is measured from the equilibrium position.

Bolution.] The equation of motion for the system is mx + bx + kx = 0 |
b

Substituting numerical values for sz, b, and k into this equation gives
X + 2x + 100x = 0

where initial conditions are x(0) = 0.05 and x(0) = 0. From this last equation e
natural frequency w, and the damping ratio ¢ are found to be Figure 5—55 ¥
S w, = 10, & = 0.1 Spring-mass-
The frequency actually observed in vibration is damped natural frequency wg. dampersystem.
wy = w, V1 — (:2 = 101 — 0.01 = 9.95 rad/sec the undamped
In the present analysis, x(0) is given as zero. Thus, solution x(7) can be written as
x(r) = x(D)e*S'“’"‘( COS wyf —+ BV S Sin w,t
It follows that att = rT.where T = 27 /w,;. x(nrT) = x(D)e*B“’«”T
Consequently, the amplitude four cycles later becomes
x(47T) = x(0)e ¢ = x(0)e (ODUNEOSIS _ g 05e 2526 = 0.05 > 0.07998 = 0.004 m
Obtain both analvtically and computationally the unit-step response of tbe following higher-order
system: C(s) _ 352 4+ 2552 + 725 + 80

R(s) ~ s* + 8s° + 40s% + 965 + 80
[|Obtain the partial-fraction expansion of C(s) with MATLAB when R(s) is a unit-step function.|
MATLAB Program 5-18 vyields the unit-step response curve shown in Figure 5-56. It
also yields the partial-fraction expansion of C(s) as follows:

C(s)= 35> + 255> + 725 + 80 1 _—0.2813—jO.1719 ,—0.2813 + jO.1719 , —0.4375, —0.375 , 1
sT+ 857 + 4057 + 965 + 80 s s + 2 — j& s + 2 + j4 s+ 2 (s+2)2 "
C(s)— —0.5626(s + 2) , (0.3438) < 4 04375 _ 0375 , 1
(s + 2)" + 4% (5—0—2)2—0—42 s+ 2 (s + 2)? s
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MATLAB Program 5—18
A ey < Unit-Step Response of C(s)/R(s) and Partial-Fraction Expansion of C(s) ——————
num=[3 25 72 80]; den =[1 8 40 96 80]; step(num,den); v =03 O 1.2]; axis(v), grid
%% To obtain the partial-fraction expansion of C(s), enter commands numl1 = [3 25 72 80];
Yo denl = [1 8 40 96 80 0O]; Irp,k] = residue(num1 ,denl)
numl = [25 72 80]; denl =[1 8 40 96 80 O]; [r,p, k]l = residue(num1 ,den1)
r=-0.2813- 0.1719i p = -2.0000+ 4.0000i k = T[]

-0.2813+ O.1719i -2.0000- 4.0000i

-0.4375 -2 .0000

-0.3750 -2 _ 0000

1.0000 0

Step Response

Ampliude
=]
ol

O

Figure 5—56

Unit-step g -
response :
curve.

O & O.I5 ]. H H H

1.5
Time (saec)

Hence, the time response ¢(f) can be given by
c(t) = —0.5626e > cos4r + 0.3438e ' sindr — 0.4375e 2 — 0.375re > + 1

The fact that the response curve is an exponential curve superimposed by damped sinusoidal
curves can be seen from Figure 5—56.

When the closed-loop system involves a numerator dynamics, the unit-step response curve
may exhibit a large overshoot. Obtain the unit-step response of the following system with

MATLAB: c(s) _ 10s + 4 Oblain also the unit-ramp response with MATLAB.
R(s) 57 + 45 + 4
MATLAB Program 5—19 produces the unit-step response as well as the unit-ramp
response of the system. The unit-step response curve and unit-ramp response curve, together with
the unit-ramp input. are shown in Figures 5—57(a) and (b). respectively.
Notice that the unit-step response curve exhibits over 215% of overshoot. The unit-ramp
response curve leads the input curve. These phenomena occurred because of the presence of a large
derivative term in the numerator.

MATLAB Program 5—-19

num = [10 4]; den = [1 4 4]; t=0:0.02:10; v = step(num,den,t); plot(t,y) erid
title("Unit-Step Response') xlabel('t (sec)") viabel('Output') numl = [10 4];

denl =[1 4 4 0]; y1 = step(num,denT,t); plot(t,t,"—',t,v1) v=[0 1T0 O 10]; axis(v);
grid title("Unit-Ramp Response') xlabel('t (sec)")

viabel('Unit-Ramp Input and Output') text(6.1,5.0,'Unit-Ramp Input') text(3.5,7.1,'Output')

Unit-Step Response Unit-Ramp Response
R ' ' ' ' T ] < : A
=
& 7 | : i
p=, :
1.5 BN B 6 e T - 1
— = : H :
= = S e - —
B = Unit-Ramp Input
s g a o
o :
= 3 .
: =1
os L. U SR L L L Ll gay e J 2 (b) g
: e S
t (sec) : : r (sec)
o i i i i i i H o] L i i i i i i
0 1 2 3 4 s 6 7 8 o 1 2 3 E s [ 7
Figure S5—S7 (a)Unit-step response ; (b) unit-ramp response curve plotted with unit-ramp input.
C(s) _ 6322352 + 18s + 12.811

Consider a higher-order system defined by R(s) ~ s* + 65° + 11.32235° + 18s + 12.811

Using MATILAB, plot the unit-step response curve of this system. Using MATLAB. obtain the rise
time, peak time, maximum overshoot. and settling time.

MATLAB Program 5—20 plots the unit-step response curve as well as giving the rise
time, peak time, maximum overshoot, and settling time. The unit-step response curve is shown in
Ficure 5—58.

MATLAB Program 5-20

[/ P — This program is to plot the unit-step response curve, as well as to find the rise time, peak time,
% maximum overshoot, and settling time. In this program the rise time is calculated as the time required
o, for the response to rise from 10% to 90% of its final value. ————

num=[6.3223 18 12.811]; den=[1 6 11.3223 18 12.811]; t=0:0.02:20; [v,x,t] = step(num,den,t);
plot(t,y) grid title('Unit-Step Response') xlabel('t (sec)') ylabel('Output y(t)")

rl = 1; while y(r1) < 0.1, r1 =r1+1;end; r2 =1; while y(r2) <0.9, r2 =r2+1; end;

rise_time = (r2-r1)*0. 02 rise_time = 0.5800 [ymax,tp] = max(y); peak_time = (tp-1)*0.02
peak_time = 1.6600 max_overshoot = ymax-1 max_overshoot = 0.6182

s = 1001; while y(s) > 0.98 & y(s) < 1.02; s = s-1; end; settling_time = (s-1)*0.02 settling_time =10.02
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=
=12 .
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o = -
o.e | .
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A N o
Consider the closed-loop system defined by R(5) — 2 & 2.:.‘,’(9:5 g

Using a ““for loop.” write a MATLAB program to obtain unit-step response of this system for the
following four cases:

Case 1: & = 0.3, w, =1 Case2: ¢ = 0.5, @,= 2 Case3:¢ =07, w,= 4 Cased: < =0.8, w,— 6
Define w? = a and 2w, = b. Then.a and b each have four elements as follows:

a=[1 4 16 36] b =06 2 56 9.0]

Using vectors a and b, MATLAB Program 5—21 will produce the unit-step response curves as
shown in Figure 5-59.

MATLAB Program 5—-21

a=1[1 4 16 36]; b=[0.6 2 5.6 9.6]; t=0:0.1:8; v = zeros(81,4); fori=1:4; num = [a(i)];
den = [1 b(i) a(i)]; v(,i) = step(num,den,t); end plott,y(:,1),'o",t,yv(:,2),'x",t,v(:,3),'-"t,y(:,4),'-.")
grid title('"Unit-Step Response Curves for Four Cases') xlabel('t Sec") viabel('Outputs') gtext('1")
stext('2") stext('3") stext('4") )

Unit-Step Response Curves for Four Cases

Iy

N
T

(utputs

0.6 -

Fig 5—S9

Unit-step e FY B <
response . o : : :
curves 0.2 [f "o TITT oot nn s T - ]
Tfor g e : : :
four O i i i i i i i i
cascs. O 1 2 3 s Sec P = [ v s

Using MATLADB. obtain the unit-ramp response of the closed-loop control system whose closed-

loop transfer function is C(s) _ s + 10
R(s) 57 + 657 + 95 + 10
Also. obtain the response of this system when the input is given by »r = e %%
MATILAB Program 5—-22 produces the unit-ramp response and the response to the
exponential input »r = e % . The resulting response curves are shown in Figures 5—60(a) and (b).
respectively.
MATLAB Program 522
Yo ————————— Unit-Ramp Response ————————-
num = [1 10]; den=[1 6 9 10]; t=0:0.1:10; s y = Isim(num,den,r,t); plot,r,'-',t,y,'o")
grid title('Unit-Ramp Response by Use of Command "lsim"") xlabel('t Sec") viabel('Output')
text(3.2,6.5,'Unit-Ramp Input') text(6.0,3.1,'Output')
Yo ————————— Response to Input r1 = exp(-0.5t). ————— i
num = [0 O 1 10]; den=[1 6 9 10]; t=0:0.1:12; r1 =exp(-0.5%); yl = Isim(num,den,r1,t);
plott,r1,'-',t,yv1,'o") grid title('Response to Input r1 = exp(-0.51)") xlabel('t Sec")
viabel('Input and Output') text(1.4,0.75,'Input r1 = exp(-0.5t)") text(6.2,0.34,'Output')
10 Unit-Ramp Response by Use of Command “lsim™ . Response to Input 7 — e 237
9 r 0.9 | ,
= 8 1 os | : -
= Input #, — e 0-5¢
=7 | 2 : : : B 0.7 | : B
= { Unit-RampInput : = oésniao
6 - 1 & 0.6 | o = -
= N % (b)
Figure 5—60 > (a) e 0.5 = < 1
(a)Unit-ramp 4 | : 1 = oa & S H 4
response = o > Output
Lourves 3r Purput 1 0.3 =5 EX : : ]
response =}
* tg ' 27 7 02 2 2 i
exponential | | i o.1 o
input ; . _,_-? ]
ry=e 04 1 2 3 1 5 I3 7 s 9 10 o : ' '
' ¢ Sec 0 2 4 7 Sec 8 10
A —S—13. (s) s
Obtain the response of the closed-loop system defined by R(s) — = E——
when the input »~(r) is given by  »(r) = 2 + ¢ & = -

[The input »(7) is a step input of magnitude 2 plus unit-ramp input.]

Solution.|
A possible MIATILI A B program is shovwn in MIATIL  AB Program 5—23. The resulting

response curve., together with a plot of input function. is shown in Figure S5S—61.

| MATLAB Program 523

mnurm = [5]; dern = [1 1 51; t = O:0.05:1T0; rr = 2Z24t; c = Isim(nmnum,demn,r.t©);
plottt,r,"-", t,c,"O") srid rtitle(' Response to Input r(t) = 2 + t')

<label('t Sec"') viabel("Ourput c(t) and INnput () = 2 + ©')
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Response to Input »~(r) — 2 + r
T T T T T T T

N

el o]
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Qutput et and Iput () =2+ £

4

Figure S—61
Response 2
to input
F(E)=2+7r

L8] 1 2 3 <1 = [<3 7 = k=) 10

rSec
Obtain the response of the svsterm shown in Figure 5S—62 when the input »(7) is given by
() — % r2 [The input »(r) is the unit-acceleration input.]
R(s) 2 C(s)

Figure 5S—62 —_— s + 1)

Control system. Y
The closed-loop transfer function is <(s) _ 2

R(s) s + 5 + 2

MATIL.AB Program 5—24 produces the unit-acceleration response. The resulting, response. togethe
with the unit-acceleration input. is shown in Figure 5—63.

MATLAB Program 5—24
num = [2]; den=1[1 1 2]; t= 0:0.2:1T0; r= 0Q0.5*%t."N2; y = Isim(num,den,r,t);
plot(,r,'-'t,y,'o't,y,"'-") grid title('Unit-Acceleration Response') xlabel('t Sec")
viabel('Input and Output') text(2.1,27.5,'Unit-Acceleration Input') text(7.2,7.5,"Output')
so LJlnit—Aclcelera!tion Rlespons!e
as |-
= 40 -
= 35 |
—?E 30 |-
Eo2s |
20 |-
15 |-
Figure S—63
10 |-
Responsce
o unit- s |-
acceleration : : :
input. s 1 2 3 =1 s IS 7 = =) 10
rScec
Consider the system defined by C(s) _ = 1‘,
- R(s) s+ 28 + 1

where £ = 0. 0.2, 0.4, 0.6, 0.8, and 1.0. Write a MATLAB program using a “for loop™ to
obtain the two-dimensional and three-dimensional plots of the system output. The input is the
unit-step function.

MATLADB Program 5—25 is a possible program to obtain two-dimensional and three-
dimensional plots. Figure 5—64(a) is the two-dimensional plot of the unit-step response curves for
various values of £. Figure 5—04(b) is the three-dimensional plot obtained by use of the command
“mesh(v)” and Figure 5—64(c) is obtained by use of the command “mesh(v’')”. (These two
three-dimensional plots are basically the same. The only difference is that x axis and y axis are in-
terchanged.)

MATLAB Program 5—-25

t=0:0.2:12; forn=1:6; num=[1]; den =I[1 2*(n-1)*0.2 11; [y(1:61,n),x,t] = step(num,den,t);
end plot(t,y) erid title('Unit-Step Response Curves') xlabel('t Sec") viabel('Outputs")
gtext('\zeta = 0"), gtext('0.2") gtext('0.4") gtext('0.6") gtext('0.8") gtext('1.0")

% To draw a three-dimensional plot, enter the following command: mesh(y) or mesh(y'). We shall
Yoshow two three-dimensional plots, one using “mesh(y)” and the other using "mesh(y")". These two
% plots are the same, except that the x axis and y axis are interchanged.

meshi(y) title('Three-Dimensional Plot of Unit-Step Response Curves using Command "mesh(y)"")
xlabel('n, wheren =1,2,3,4,5,6") viabel('Computation Time Points') zlabel('Outputs') meshi(y')
title('Three-Dimensional Plot of Unit-Step Response Curves using Command "mesh(y transpose)"')
xlabel('Computation Time Points') viabel('n, where n = 1,2,3,4,5,6")

Unit-Step Response Curves
2 T T T T

Figure S—64 £=0

(a)Two-dimensional T8 e R T

plot of unit—step 1.6 - 0.2 N ...............................................
TresSpPONse CUurves: ‘%L' 14 | T~ O N A S W
(b)ithree-dimensional = ) 0.4

plot of unit-step 1.2 o6

response cCurves 1 b D m

using command o.8 10

“mesh(y) "z . :

(cHthree-dimensional 0.6

plot of unit-step 0.4 |

response curves o>

using command = I

Tmeshiy)” °s 3 4 s < s 5 =
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Three-Dimensional Plot of Unit-Step Response Ci
using Command “mesh(y transpose)”

Three-Dimensional Plot of Unit-Step Response
Curves using Command “mesh(y)” H

Computation

Computation
1,2,3,4,5,6 10 10 Time Points

Time Points

A5 —16.

Consider the system subjected to the initial condition as given below.

E2 (o) 1 O x4 21 (0) 2 X
X |= O (@] 1 x> |- x5 (O = 1 » = [1 O O] 2o
< 10 —17 — e x5(0) 0.5 s

X
(There is mo input or forcing function in this system.) Obtain the response y(t) versus t to the

oiven initial condition by use of Equations (5—58) and (5—60).

[Solution. | A possible MATLAB program based on Equations (5—58) and (5—60) is given by MAT-
ILAB program 5—26. The response curve obtained here is shown in Figure 5—-65. (Notice that this

problem was solved by use of the command “initial™ in Example 5-16. The response curve obtained
here is exactly the same as that shown in Figure 5—-34.)

MATLAB Program 5-26
t=0:0.05:10; A=[010;001;-10-17-8]; B =1[2;1;0.5]; C=[1 0 0O]; J|y,x,t] = step(A,B,C*A,C*B,1,1);
plot(t,y) grid; title('Response to Initial Condition') xlabel('t (sec)") viabel('Output yv")

Response to Initial Condition

N

1
Figure S—65S

W

Response
W{Lr) to thhe
oiven 0.5 7
initial
condition. : : : : : :
@ O 1 <4 =3 [ i = o Lo
r (sac)
A—5-17.
Consider the following characteristic equation: s* + Ks® + 52 + s + 1 = 0
Determine the range of K for stability. 5+ 1 1 1
The Routh array of coefficients is 53 K 1 (8]
52 (K—1)/K 1

For stability, we require that
e “ 5 s 1—K2/(K—1)
K =0 (K—1)/K = 0 1-K2/(K—1)= 0 50 1
From the first and second conditions. K must be greater than 1. For KX = 1. notice that the term
1 — [Kz/(K — 1)]15 always negative, since K 1 — K2 _  —1 + K(1 — K) -0

K 1 K
Thus, the three conditions cannot be fulfilled simultanecously. Therefore. there is no value of K that
allows stability of the system.

Consider the characteristic equation given by ags"+ a,;5" H4a>s" 2y ... @, .5 +a,=0(5-67)
The Hurwitz stability criterion. given nexlt. gives conditions for all the roots to have negative real
parts in terms of the coefficients of the polynomial. As stated in the discussions of Routh’™s stability
criterion in Section 5—6, for all the roots to have negative real parts, all the coefficients a’s must
be positive. This is a necessary condition but not a sufficient condition. If this condition is not sat-
isfied. it indicates that some of the roots have positive real parts or are imaginary or zero. A suf-
ficient condition for all the roots to have negative real parts is given in the following Hurwitz
stability criterion: If all the coefficients of the polyvnomial are positive, arrange these coefficients

in the following determinant: a, @, as - 0 0O 'e)
as a> ay - - - -

(8] e 2 as s o, (0] (8]

A,=|0 ay  ds - d, 1 O O

- - - @, - a,, (8]

- - - Ap—3 dy—1 ©

(§) 0 0 e @, a4 A, > A,

where we substituted zero for a; if 5§ = xm. For all the roots to have negative real parts, it is neces-
sary and sufficient that successive principal minors of A, be positive. The successive principal

minors are the following determinants: an s v Aoy q
ag a3 - dzi-> P
A, — . i = 1.2, ....n — 1
i 0O e - [z YR ( s > ] )
0] O - a;
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where a, = 0ilf s = rm. (It is noted that some of the conditions for the lower-order determinants

are included in the conditions for the higher-order determinants.) If all these determinants are
positive. and ao = 0O as already assumed. the equilibrium state of the system whose characteristic

equation is given by Equation (5—67) is asymptotically stable. Note that exact values of determi-

nants are not needed: instead., only signs of these determinants are needed for the stability criterion.
Now consider the following characteristic equation: 6054 -+ a153 —+ a2.5'2 + aszs + a, = 0

Obtain the conditions for stability using the Hurwitz stability criterion.

The conditions for stability are that all the a’s be positive and that

a4 as a, as O =

Ay = |a@p az| = aiaz — dagdaz = 0 My = |Qo QA da| = a(aas — ala4) — Qopdiz
? 5] a a
Az= ailla,a: — acas) — aira, = 0 x =

It is clear that, if all the a’s are positive and if the condition A; = 0 is satisfied. the condition
MAs> = 0is also satisfied. Therefore. for all the roots of the given characteristic equation to have neg-
ative real parts. it is necessary and sufficient that all the coefficients a’s are positive and Ax; = 0.

Show that the first column of the Routh array of 5" + a; s 4+ g5t 4+

s+ gy s + a, = 0
is given by 1, Ay, -.jz’ % . Vi where a, 1 O O = 0]
= = 2 A n—1 _ |as s aq 1 = O
) Ar =|as a, a; a - O
5 (rz = r=1) a;, = 0 itk = n e S = = = E a,
Solution. The Routh array of coefficients has the form 1 az ad, ds --- a

Cq Co =
The first term in the first column of the Routh array is 1. The next term in the first column is a, .
which is equal to A, . The next term is &, . which is equal to a1a — a3 _ Do
2 s = = = ' JFa s
The next term in the first column is ¢, . which is equal to
boas — a,b> :Kalaz—ag)/aﬂa3_a1 [(Fraa—as)fa,] _ ajasas, — ai — aia, + a;as __ Ny
 § Kalaz—ag,)/al:l a,a; — as ey

In a similar manner the remaining terms in the first column of the Routh array can be found.
The Routh array has the property that the last nonzero terms of any columns are the same:

that is, if the array is given by ‘;0 ‘3’12 ‘;4 %6
a a a < — — —
Ah idel e e then @&y — Cz3 — e, — 2 bl' b; b; then aeg = bs = d> = i
by Do b and if the array is given by <1 o =
T T Ca ay a5
e es ey O
1 2
A ) S A, a, AL,
£1 In any case., the last term of the first column is equal to «,,. or a,, = T = P =
ay 1 O (i) cx, 1 O O
3 = / — | <= L2 ] <y __ ez “t « i b = Mo
For example. if 72 4. then Ay, = P as aa aa o = P = 3Cla
a— e s o 4 O (8] O P %
Thus it has been shown that the first column of the Routh array is given by
1, A, A youn s i . S
. 2 =

Show that the Routh’™s stability criterion and Hurwitz stability criterion are equivalent.
If we write Hurwitz determinants in the triangular form

“aa e 2y

Ay = - = . (§ = 1,2, ....rn)
O ) a,;

where the elements below the diagonal line are all zeros and the elements above diagonal

line any numbers. then the Hurwitz conditions for asvmptotic stability become

Ay — @185 -~ = O, CE =512 0 0F2)
which are equivalent to the conditions a;;, = 0O, a>> = 0, S &, == O
We shall show that these conditions are equivalent to @1 =0, b;=>=0, ¢, = 0,

5 3 L ‘ a, az as 93
where a,., b;,c;.....,are the elements of the first column in the Routh array. i a. as
Consider. the following Hurwitz determinant. which corresponds to # A4:A.—|9P a7 a5 as

= = 5 E = = a a5
The determinant is unchanged if we subtract from the ith row k times the jth t; ;’1 =
row. By subtracting i i r : s B ¥ Ll
3 2 £ from second row gagp //a, times first row. we obtain A, — |0 ax @z as,
(0] @y ds ads
(8] Ao d4dz ay
P <] e
where «aq,=—¢c, Hon=— ¥ — a(,) - P . :a4fa7?a5 Aoy — As— g as 811 gs 35 g—;
- - K 22 23 24
Similarly. subtracting from fourth row ag fa,; times third row wyields Aa=|0O < a5 s
. Pz —~ Py = =
where Fas — > — o2 as Aan — Ga — gt As O (8] Fas daa
MNext, subtracting from the third row a,; Jfas> times the seccond row wields
Pl oF s L 2 <y ¥y
_ N «r _ IR =
Ny — Eoo o Eon where d@zs=as ass 23 sa— A s P2a Xy s Hs
O O L gt €Tzq Finally, subtracting from the last row Oy — O T By (Eoy
= - - - - (] o P «r
© o Fas Haa Fan fas/ A3z times the third row vields O 32 s
where gy — gy Tas 34
From this analysis, we see that A,= @i1@8>>@3:3F44 ANy =@ 1835 As=d1 12 A—4n1

The Hurwitz conditions for asymptotic stability A;= 0, A, = 0, A;= 0, 4,=>= 0, ---
reduce to the conditions a1 =0, a,, = 0, as; = 0, Qaa = 0,

The Routh array for the polvnomial agst + a,5° + a>5% + azs + a, = 0 C:zc: %23 e
where ag = Oand rn = 4.is given by — by by
From this Routh arravy. we see that = g = =
3 @y i s> as a, “3 b, dy
a33:a3—g—212a23:£321;—1a122:(:1 6144—544_4%4}%034—34:(11
(The last equation is obtained using the fact thatas, = 0O, d,, = a4, and a, = b, = d,.) Hence the
Hurwitz conditions for asymptotic stability become a, = 0, by > 0, ¢¢ = 0, d;, = 0

Thus we have demonstrated that Hurwitz conditions for asymptotic stability can be reduced to
Routh’s conditions for asymptotic stability. The same argument can be extended to Hurwitz

determinants of any order. and the equivalence of Routh’s stability criterion and Hurwitz stabil-
ity criterion can be established.
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Consider the characteristic equation s* + 2s% + (4 + K)s? + 95 + 25 = 0

Using the Hurwitz stability criterion. determine the range of K for stability.

Comparing the given characteristic equation s* + 2s5% + (4 + K)s2 + 95 + 25 = 0
with following standard fourth-order characteristic eq: ags® +~ a,5° + a,s> + as + a, = 0

we find ag =1, a;,—=2, a,— 4+K.,a,=9. a,=25 a;, a; 0O 0

AL —|Po Az a, (8]
The Hurwiltz stability criterion states that A, is given by 47|10 a7 as O

O ap a> ay
For all the roots to have negative real parts. it is necessary and sufficient that succesive principal

minors of A, be positive Tl;e sucuessive principal minors aie a, as o0 % " g.K 20;’ sk 100
A = = - — =|la, a —+ D= —
For all principal minors to be p051tlve. we require that A i = 1, 2, 3) be positive. Thus. we require
2K — 1 = 0 18K — 109 = O
from which we obtain the region of K for stabilily to be K = %%?

Explain why the proportional control of a plant that does not possess an integrating property
(which means that the plant transfer function does not include the factor 1 /s5) suffers offset in
response Lo step inputs.

Consider. for example. the system shown in Figure 5—66. At steady state. if ¢ were egual

o a nonzero constant », then e = 0O and w = Ke = O, resulting in ¢ = 0O, which contradicts the
assumption that ¢ = »r nonzero constant.

A nonzero offset must exist for proper operation of such a control system. In other words, at
steady state. if e were equal to » /(1 + K). then v« = Kr /(1 + K) and ¢ = Kr /(1 + K ). which
results in the assumed error signale = »/(1 + K ). Thus the offset of /(1 + K ) must exist in such
a systemn.

IDNs
v e K “ 1 < | Figure 5—67 ﬂr(s)c QE(S) w16 - 1 |26
Figure 5—66 Ts+ 1 Block diagram Js
Control svst of aspeed *
ontro” system. control system

The block diagram of Figure 5—67 shows a speed control system in which the output member of
the system is subject to a torque disturbance. In the diagram. £2,.(5). £2(5). T (s5). and D(s) are the
Laplace transforms of the reference speed. output speed. driving torque. and disturbance torque,
respectively. In absence of a disturbance torque. the output speed is equal to reference speed.
Investigate the response of this system to a unit-step disturbance torgue. Assume that the
reference input is zero, or £2,(s5) = O.
Figure 5—68 is a modified block diagram convenient for the present analvsis. The closed-
loop transfer function is £25(s) 1

D(s) ~ JTs + K
where £2,(s5) is the Laplace transform of the output speed due to the disturbance torque. For a unit-
step disturbance torque. the steady-state output velocity is -

wD(OC:) = 11I"l'l SQD(S)— llrlﬂﬁ = = i}(

From this analysis. we conclude th":t. if a step disturbance torque is applied to the output
member of the system. an error speed will result so that the ensuing motor torque will exactly can-
cel the disturbance torque. To develop this motor torque, it is necessary that there be an error in
speed so that nonzero torgue will result. (Discussions continue to Problem A—5—-24.)

L250(5)

D(s)

0 E(s) T(s) Qs)
Figure 5-69 _L@_» Gols) e ) B
Block diagram of a Js

speed control system. “

Figure 5S—68
Block diagram of the
speed control system
of Figure 5S—67 when £2,(s5)=0

In the system considered in Problem A—5-23 it is desired to eliminate as mmuch as possible the
speed errors due to torgue disturbances.

Is it possible to cancel the effect of a disturbance torque at steady state so that a constant
disturbance torque applied to the output member will cause no speed change at steady state?
Suppose that we choose a suitable controller whose transfer function is G, (5). as shown
in Figure 5—69. Then in the absence of the reference input the closed-loop transfer function
between the output velocity £2,5(5) and the disturbance torque D(s) is

BB _ 1 e ) I G

D(s) — Js i
The steady-state output speed due to a unit-step disturbance torque is @p(oc)= limmy s025(s)
wp(oc)= lim 7= SGC(.S) = T iGA0) To satisfy the requirement that wp(oc) = 0
we must choose .(0) = oo. This can be realized if we choose G (5) = SL

Integral control action will continue to correct until the error is zero. This controller, however.

presents a stability problem. because the characteristic equation will have two imaginary roots.

One method of stabilizing such a system is to add a proportional mode to controller or choose
G (s) = K, + K/s

Figure 5—70 D(s) 1 25(5)
Block diagram of the E%; Js

speed control system
of Figure 5—69 when
G (s)=K,+(K /5)and £2,(5) = O. =

With this controller. the block diagram of Figure 5—69 in the absence of the reference input can

be modified to that of Figure 5—-70. The closed-loop transfer function £2,(s5)/0D(s) becomes
olS) 5
D(s) Is? + K,s + K
For a unit-step disturbance torque. the steady-state output speed is 1
. s _
wp(oo) = Hmsf2s(s) = lim Js? + K,s + K 5 o
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Thus, we see that the proportional-plus-integral controller eliminates speed error at steady state.

The use of integral control action has increased the order of the system by 1. (This tends to
produce an oscillatory response.)

In the present system. a step disturbance torque will cause a transient error in the output
speed., but the error will become zero at steady state. The integrator provides a nonzero output
with zero error. (The nonzero output of the integrator produces a motor torque that exactly
cancels the disturbance torque.)

Note that even if the system may have an integrator in the plant (such as an integrator in the
transfer function of the plant). this does not eliminate the steady-state error due to a step distur-
bance torque. To eliminate this. we must have an integrator before the point where the disturbance

torque enters.
#
“onsider the system shown in Figure 5—71(a). The steady-state error to a unit-ramp input is

e, = 2/ w,,. Show that the steady-state error for following a ramp input may be eliminated if the
input is introduced to the system through a proportional-plus-derivative filter. as shown in Figure
5—71(b). and the value of k is properly set. Note that the error e(t) is given by r () — c(t).
The closed-loop transfer function of the system shown in Figure 5— 71(b) is
2
C(s) _ (1 + ks)w? o _ {5~ + 2Lw, s — w ks
R(s) 52 + 2icw,5 + w> Al el =) .G 52 + 2&w,,Ss + w2 (=)
Figure 5-71 2 R(s) C(s)
L
(a) Control system: — —1 1+ ks
J S(s + 28wy)
(b) control system (a) ‘
with input filter. (b) "‘
If the input is a unit ramp. then the steady-state error is e(oco) = r(oo) — c(ow)
> o
e(oo):]ims(‘gz?_'_ 2iw,5 — wiézs 1 — 2lwy, — @wnK Therefore. if k is chosen as k = %
s—0 5 + 2&w,s5 + w;, ) S Wy

then the steady-state error for following a ramp input can be made equal to zero. WNote that, if there
are any variations in the values of ¢ and/or w, due to environmental changes or aging. then =
nonzero steady-state error for a ramp response may result.
Consider the stable unity-feedback control system with feedforward transfer function G(s5).
Suppose that the closed-loop transfer function can be written
Cilsty _  walfsy e 3 Ts T % 0j
R(s) 1+ G(s) (Tis + 1) Tos + 1)---(T;,5 + 1)

ShOWthatf e(t)dt = (T, + T5 + -+ T,) — (T, + T, + -~ + T3,)
L8]

(rr2 = n)

where e(#) = r(r) — c(t) is the error in the unit-step response. Show also that
1 :
E:m:(Tl+TZ+-'.+Tn)_(Ta+Tb+.-'+Tm)

Let us define (7,s + 1)(Tps + 1)---(T,,s + 1) = P(s)

and (71s + 1)(Tos + 1)---(T,s + 1) — @(s) Then }(?7((3)1 — QP((S)l and E(s)— L(j;(s) (s)

5 5
For unit-step input. R(s)=1 /s and E(s ):giﬂ-l
sQ(s)
Since the system is stable, Lcc'e(r) dt converges to a constant value. Noting that
> E(s) : °° . Q(s) — P(s)
e(t)dt = 11rns— = lim E(s) we have e(t)dr = lim
0 -0 sQ(s)

° i ) — P( _ -
~ I 50 + 50 (Ss)) i [Q(s) — /()] Since U P(s) = T, + T + - + T,

im Q' (s)=T+Tx+ - +7, we have e(r)dr = (T + T+ +T,) — (Ta+Tp + -+ T,)
0

‘ . . oo _ . 1 1 1 i 4
For a unit-step input ’(f)~51“°efoe(r)dr =lim E(s) =l 7 a5y RE)»= Im 55y 5 T limsG(s) K,

I 1 _ ; _ :
we have K, ~ TmsG(s) — (T, + T» + e By) = (I &0 =+ S e

Note that zeros in the left half-plane (that is, positive 7,, T}, ..., 7,,) will improve K, . Poles close

to the origin cause low velocity-error constants unless there are zeros nearby.
sk sk ok ok s ok ke sk ok ke sk ok sk sk ok s ok ke s ok ok s ok ke sk ok s sk sk s ok sk sk ok sk sk sk s sk sk ke sk sk s ok ok s ok sk sk sk sk sk sk s ok ok sk ok sk s ok sk s sk sk sk ok sk sk ok sk sk ok sk sk sk sk sk sk ok ok sk sk ok sk ok ok

PROBLEMS

B-5-1. A thermometer requires 1 min to indicate 98% of  Obtain the rise time, peak time, maximum overshoot, and
the response to a step input. Assuming the thermometer to  settling time.
be a first-order system, find the time constant.
[f the thermometer is placed in a bath, the temperature  B-5-3. Consider the closed-loop system given by
of which is changing linearly at a rate of 10°/min, how much

error does the thermometer show? 5
C(s) )

n

R(s) %+ 2w,s + wi

B-5-2. Consider the unit-step response of a unity-feedback
control system whose open-loop transfer function is

_ Determine the values of { and w, so that the system
I S responds to a step input with approximately 5% overshoot
s(s +1) and with a settling time of 2 sec. (Use the 2% criterion.)
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IB—5—4. Consider the system shown in liguare 5—72_"I'he sys-
tem is initially at rest. Suppose that the cart is set into mo
tion by an impulsive force whose strength is unity. Can it be

e Y [
Oy @annotn

o
(O
o

— x §

Impulsive & \\

force - e AMAM §
S(r)

L L %

= NN = X

Figurc 572
Mechanical systernm.

B-5—6. An oscillatory system is known to have a transfer
function of the following form:
2
L3
G(s) = —3

52 + 2éw,5 + wo

Ris)

Assume that a record of a damped oscillation is available
as shown in Figure 5 73. Determine the damping ratio & of’
the system from the graph.

i 7,

Xy
P~ — —

Figure 5-73
Dccayving oscillation.

B—5-7. Consider the system shown in Figure 5-74(a). The
damping ratio of this systcm is 0. 158 and the undampcd nat-
1 freguency is 3.16
hility. we employ tachometer teedback._ |
such a tachometer feedback system.
Determine the value of Ay, so that the damping ratio ol
the system is 0.5, Draw unit-step responsc curves of both the

oricinal and tachometer feedback svstems

nal and tachometer-feedbaclk sysiams,

relative sta-

sec. 1o 1mp o =

574 b)) shows

Adeo draw the

error-versus-time curves for the unit-ramp response of bath
SyYstems.

| I Cis)
| s(s + 1) I
()
1 (s
s+ 1 &

ED
Fes (o™ 10
1
l

Figure 5—74

{a) Conitroi system: { b) coniroi system with tachometer feedback.

B—5—-8. Referring to the system shown in Figure 575, de-
termine the values of K and &k such that the system has a
damping ratio £ of 0.7 and an undamped natural frequency
e, of 4 rad/sec.

B—5-9. Consider the system shown in Figure 5-76. Deter-
mine the value of k& such that the damping ratio £ is 0.5. Then
obtain the rise time 7,. peak time 7,. maximum overshoot
M. and settling time 7 in the unit-step response.

B—-5—-10. Using MATLAB. obtain the unit-step response.
unit-ramp response. and unit-impulse response of the fol-
lowing systerm:

C(s) 10

R(s) s + 2s + 10

where R(s) and C(s) are Laplace transforms of the input
r(t) and output c(#). respectively.

B—5—11. Using MATLAB. obtain the unit-step response.
unit-ramp response, and unit-impulse response of the fol-
lowing system:

U Rl | R el
v=o oo 7]

where & is the input and v is the output.

B-—5-12. Obtain both analvtically and computationally
the rise time. peak time. maximum overshoot. and settling
time in the unit-step response of a closed-loop system
given by

C(s) 36

R(s) s + 25 ~ 36

Figure 575
Closed-loop system.

R(s)

()

e o | B

I I |
L |

Figure 5—76
Block diagram of a system.
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B—5—13. Figure 577 shows three systems. System I is a po-
sitional servo system. System 11 is a positional servo system
with P control action. System 111 is a positional servo sys-—
tem with velocity feedback. Compare the unit-step. unit-
impulse, and unit-ramp responses of the three systems.
Which system is best with respect to the speed of response
and maximum overshoot in the step response?

B—-5—14. Consider the position control system shown in Fig-
ure 5—78. Write a MATILAB program to obtain a unit-step
response and a unit-ramp response of the system. Plot curves
xq(F) versus 1, x,( 1) versus 7, x3(¢) versus 7, and e(r) versus r
[where e(r) = r(£) — x,(r)] for both the unit-step response
and the unit-ramp response.

C(s)

Ri=)
&D s

s(Ss+ 1)

Swystem I

Ris)
E,?

S(1 + 0.8s) |—>-

Cr(s)

1 |

s{Ss+ 1) I

Swstem IT

s ] [ |

Cinds)

[ ]
L= |

System III

Figure 5—77

Positional servo system (System [). positional servo system with PID control
action (System I1). and positional servo system with velocity feedback

(System I1I).

&)

xp

|LI
L = |

2 | -
s | > |0.]s+]|

Figure S—78
Position control system.

B—5—15. Ulsing MAT'l.Al} obtain the unit-step response
curve for the unity feedback control system whose open
ioop transfer function is

Gi(5) —

ol el BN g R
[1 OJLZJ

where w is the unit-ramp mput. Usc the Isim command to
obtain the response.

» =

R(s)

Figurc 5—80

(a) Unstable satellite
attitudc control svstcm:
(b) stabilized system.
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B—-5—-19.
¥V + 39y + 2v — 0O, R L)

Clonsider the differential equation system given by
— 0.1, »(O)y — 0.05

Using MATLAB. obtain the response y(f).subject to the
given initial condition.

B—5—20. Dctecrminc the range of K for stabihity of a unity-
feedback control system whose open-loop transfer function is

K

G = e s = 2

B—5—-21. Considcr the following charactecristic cquation:
5T+ 257 + (4 + K)sT + 95 + 25 = 0

Using the Routh stability criterion. determine the range of

K for stability.

B—5-22, Consider the closed-loop system shown in Figure 5—79.
Determine the range of K [or stability. Assume that K == O.

P
Ris)
—— K

i

1

igure 5—79Y (’losed-loop system.

s —2
(5 + 152 + 65 + 25

B—5-23. Consider the satellite attitude control system
shown in Figure 5—80(a). The output of this system exhibits
continued oscillations and is not desirable. This system can
be stabilized by use of tachometer feedback., as shown in
Figurc 5—8S0(b). It K /J = 4. what valuc of K, will vicld thc
damping ratio to be 0.67

R(s) 1 Cish
Ve & A
(a)
< rs 1 ()
— A =
Ky
(b)
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B-5-24. Consider the servo system with tachometer
feedback shown in Figure 5-81. Determine the ranges of
stability for K and K. (Note that K, must be positive.)

B-5-25. Consider the system

X = Ax
where matrix A is given by
0 1 0
A=|-b 0 1
0 —b, —b

(A is called Schwarz matrix.) Show that the first column of
the Routh’s array of the characteristic equation [sI — A| = 0
consists of 1, by, by, and b, b;.

B-5-26. Consider a unity-feedback control system with the
closed-loop transfer function

C(s)

Ks +b
R(s) > +as+b

Determine the open-loop transfer function G(s).

Show that the steady-state error in the unit-ramp
response is given by
1 a— K
K, b

€y =

B-5-27. Consider a unity-feedback control system whose
open-loop transfer function is

K
) =S5+ B)
Discuss the effects that varying the values of K and B has
on the steady-state error in unit-ramp response. Sketch
typical unit-ramp response curves for a small value,
medium value, and large value of K, assuming that B is
constant.

B-5-28. If the feedforward path of a control system
contains at least one integrating element, then the output
continues to change as long as an error is present. The out-
put stops when the error is precisely zero. If an external dis-
turbance enters the system, it is desirable to have an
integrating element between the error-measuring element
and the point where the disturbance enters, so that the ef-
fect of the external disturbance may be made zero at steady
state.

Show that, if the disturbance is a ramp function, then
the steady-state error due to this ramp disturbance may be
eliminated only if two integrators precede the point where
the disturbance enters.

R(s)

20 1 Cls)

—l- &x‘ K

(s+1)(s+4) s

Figure 5-81

Servo system with tachometer feedback.

%k 3k ok 3k %k %k ok %k %k End Of Chapter (5) %k 3k ok ok %k %k k %k
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