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<:2:>[Mathematical Modeling of Control Systems

2—1 INTRODUJCTION]

In studying control systems the reader must be able to model dyvnamic systems in math-
ematical terms and analvze their dvnamic characteristics. A mathematical model of a dw-
namic system is defined as a set of equations that represents the dvnamics of the system
accurately, or at least fairly well. WNote that a mathematical model is not unique to a
given system. A system may be represented in many different wawvs and., therefore. may
have manyv mathematical models. depending on one’s perspective.

The dynamics of many systems. whether they are mechanical. electrical. thermal.
economic. biological. and so on. may be described in terms of differential equations.
Such differential equations may be obtained by using phvsical laws governing a partic-
ular system——-rtfor example., Newton’s laws for mechanical systems and Kirchhoff’s laws
for electrical systems. We must alwavs keep in mind that deriving reasonable mathe-
matical models is the most important part of the entire analvsis of control systems.

Throughout this book we assume that the principle of causality applies to the systems
considered. This means that the current output of the system (the output at time ¥ = 0)
depends on the past input (the input forr =< 0) but does not depend on the future input
(the input for r = 0).

[Mathematical Models.| Mathematical models may assume many different forms.
Depending on the particular system and the particular circumstances. one mathemati-
cal model mavy be better suited than other models. For example. in optimal control prob-
lems. it is advantageous to use state-space representations. On the other hand, for the
transient-response or frequency-response analvsis of single-input. single-output. linear,
time-invariant svstemes. the transfer-function representation mayv be more convenient
than any other. Once a mathematical model of a svstem is obtained. various analvtical
and computer tools can be used for analysis and syvnthesis purposes.

|Simplicity Versus Accuracy.| In obtaining a mathematical model. we must make
a compromise between the simplicity of the model and the accuracy of the results of
the analysis. In deriving a reasonably simplified mathematical model. we fregquently find
it necessary to ignore certain inherent physical properties of the system. In particular.
if a linear lumped-parameter mathematical model (that is, one emploving ordinary dif-
ferential equations) is desired., it is alwavs necessary to ignore certain nonlinearities and
distributed parameters that mav be present in the phvysical system. If the effects that
these ignored properties have on the response are small. good agreement will be obtained
between the results of the analvsis of a mathematical model and the results of the
experimental study of the phwvsical system.

In general, in solving a new problem. it is desirable to build a simplified model so that
we can get a general feeling for the solution. A more complete mathematical model may
then be built and used for a more accurate analysis.

We must be well aware that a linear lumped-parameter model. which may be valid in
low-frequency operations. may not be valid at sufficiently high frequencies, since the neg-
lected property of distributed parameters may become an important factor in the dvnamic
behawvior of the system. For example. the mass of a spring may be neglected in low-
frequency operations, but it becomes an important property of the system at high fre-
quencies. ( For the case where a mathematical model involves considerable errors, robust
control theory maywv be applied. Robust control theory is presented in Chapter 10.)

|Linear Systems.l A system is called linear if the principle of superposition
applies. The principle of superposition states that the response produced by the
simultaneous application of two different forcing functions is the sum of the two
individual responses. Hence., for the linear system. the response to several inputs can
be calculated by treating one input at a time and adding the results. It is this principle
that allows one to build up complicated solutions to the linear differential equation
from simple solutions.

In an experimental investigation of a dvnamic syvstem. if cause and effect are pro-
portional. thus implving that the principle of superposition holds. then the system can
be considered linear.

[Linear Time-Invariant Systems and Linear Time-Varying Systems.| A differ-
ential equation is linear il the coeflicients are constants or functions only of the in-
dependent variable. Dvnamic systems that are composed of linear time-invariant
lumped-parameter components may be described by linear time-invariant differen-
tial equations—that is. constant-coefficient differential equations. Such swvstems are
called firnnear rirme-innvariarnr (or linear cornsranr-coefficienr) svstems. Svstems that
are represented by differential eguations whose coefficients are functions of time
are called {linnear tirme-varvirng svstems. An example of a time-varving control sys-
tem is a spacecralt control system. ( TThe mass of a spacecraflt changes due to fuel
consumption.)

Outline of the Chapter. Section 2—1 has presented an introduction to the math-
cmatical modeling of dynamic systems. Section 2—2 presents the transfer function and
impulse-response function. Section 2—3 introduces automatic control systems and Sec-
tion 2—4 discusses concepts of modeling in state space. Section 2—5 presents state-space
representation of dvnamic systems. Section 2—6 discusses transformation of mathemat-
ical models with MATLADB. Finally. Section 2—7 discusses linearization of nonlinear
mathematical models.
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2-2 (TRANSFER FUNCTION AND IMPULSE-RESPONSE FUNCTION |

In control theory., functions called transfer functions are commonly used to character-
ize the input-output relationships of components or systems that can be described by lin-
ear, time-invariant, differential equations. We begin by defining the transfer function
and follow with a derivation of the transfer function of a differential equation system.
Then we discuss the impulse-response function.

|[Transfer Function.| The rransfer furncrion of a linear, time-invariant. differential
equation system is defined as the ratio of the Laplace transform of the output (response
function) to the Laplace transform of the input (driving function) under the assumption
that all initial conditions are zero.

Consider the linear time-invariant system defined by the following differential equation:

() (re—1) . (#2) rre—1)
2o ¥ + ey + -+ a, 1y + a,¥ = by x -+ e il MR e S B (r1 = rm2)

re

where w is the output of the system and x is the input. The transfer function of this svs-
tem is the ratio of the Laplace transformed output to the Laplace transformed input
when all initial conditions are zero. or

. S output ]
Transfer function = G(5) = —————
le: input :I zero initial conditions
_ Y(S) . lE)CIS“" —+ bls’nil Sl brn—ls —+ bn:
X (s5) ags™ + a5 + --- + a,,_.8 + a,

Bwv using the concept of transfer function. it is possible to represent system dynam-
ics by algebraic equations in 5. If the highest power of 5 in the denominator of the trans-
fer function is equal to s. the svstem is called an nrthr-order svstrerr.

|[Comments on Transfer Function.| The applicability of the concept of the trans-
fer function is limited to linear. time-invariant, differential equation systems. The trans-
fer function approach, howewver. is extensively used in the analysis and design of such
systems. In what follows, we shall list important comments concerning the transfer func-

tion. (Note that a system referred to in the list is one described by a linear, time-invariant,
differential equation.)

1. The transfer function of a svstem is a mathematical model in that it is an opera-

tional method of expressing the differential equation that relates the output vari-
able to the input variable.

The transfer function is a property of a system itself. independent of the magnitude
and nature of the input or driving function.

The transfer function includes the units necessary to relate the input to the output:
howewver. it does not provide any information concerning the phwvsical structure of

the syvstem. ( The transfer functions of many phwvsically different syvstems can be
identical.)

If the transfer function of a system is known., the output or response can be stud-

ied for various forms of inputs with a view toward understanding the nature of
the swvsterm.

U

If the transfer function of a system is unknown., it may be established experimen-
tally by introducing known inputs and studyving the output of the system. Once
established. a transfer function gives a full description of the dyvnamic character-
istics of the system. as distinct from its physical description.

[Convolution Integrail For linear. time-invariant system the transfer function «(s) is
¥ (s5)

X (s

where X (s5) is the Laplace transform of the input to the system and ¥ (s) is the Laplace
transform of the output of the swvstem. where we assume that all initial conditions in-
volved are zero. It follows that the output P (s5) can be written as the product of G (s5) and
X (5).0or Y (s) — G(s)X(s) (2—1)
MNote that multiplication in the complex domain is equivalent to convolution in the time

domain (see Appendix A)., so the inverse Laplace transform of Equation (2—1) is given
by the following convolution integsral:

r xr
y(e) = / x(T)g (s — 7)dr — f g(m)x(r — T) T
o “ where both g(r) and x(r) are O forr = 0.
| Impulse-Response Function.' Consider the output (response) of a linear time-
invariant system to a unit-impulse input when the initial conditions are zero. Since the

Laplace transform of the unit-impulse function is unity, the Laplace transform of the
output of thhe system is Y (s) = G(s) (2—2)

The inverse Laplace transform of the output given by Equation (2—2) gives the impulse
response of the system. The inverse Laplace transform of G(s5). or

FG(s)] = g(0)
is called the impulse-response function. This function g(¢) is also called the weighting
function of the system.

The impulse-response function g(r) is thus the response of a linear time-invariant
system Lo a unit-impulse input when the initial conditions are zero. The Laplace trans-
form of this function gives the transfer function. Therefore. the transfer function and
impulse-response function of a linear, time-invariant system contain the same infor-
mation about the system dvnamics. It is hence possible to obtain complete informa-
tion about the dyvnamic characteristics of the svstem by exciting it with an impulse
input and measuring the response. (In practice., a pulse input with a very short dura-

tion compared with the significant time constants of the system can be considered an
impulse.)
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23 (AUTOMATIC CONTROL SYSTEMS]

A control system may consist of a number of components. To show the functions
performed by each component., in control engineering. we commonly use a diagram
called the block diagrarrm. This section first explains what a block diagram is. WNext, it
discusses introductory aspects of automatic control systems. including various control
actions. Then. it presents a method for obtaining block diagrams for physical systems., and,
finally, discusses techniques to simplify such diagrams.

|[Block Diagrams.)] A block diagrasm of a system is a pictorial representation of the
functions performed by each component and of the flow of signals. Such a diagram de-
picts the interrelationships that exist among the various components. Differing from a
purely abstract mathematical representation. a block diagram has the advantage of
indicating more realistically the signal flows of the actual system.

In a block diagram all system wvariables are linked to each other through functional
blocks. The furncrtiornnal block or simplyv block is a symbol for the mathematical operation
on the input signal to the block that produces the output. The transfer functions of the
components are usually entered in the corresponding blocks, which are connected by ar-
rows to indicate the direction of the flow of signals. Note that the signal can pass only
in the direction of the arrows. Thus a block diagram of a control system explicitly shows
a unilateral property.

Figure 2—1 shows an element of the block diagram. The arrowhead pointing toward
the block indicates the input, and the arrowhead leading away from the block repre-
sents the ocoutput. Such arrows are referred to as sigrnals.

) a a—b
Figure 2—1 Transfer Figlll'e 2-2
Element of a block — function f— . .

. i G(5) Sutn[n]ng pOl]"]t.
diagram. b =

Note that the dimension of the output signal from the block is the dimension of the
input signal multiplied by the dimension of the transfer function in the block.

The advantages of the block diagram representation of a system are that it is casy
to form the overall block diagram for the entire system by merelv connecting the blocks
of the components according to the signal flow and that it is possible to evaluate the
contribution of each component to the overall performance of the system.

In general, the functional operation of the syvstem can be visualized more readily by
examining the block diagram than by examining the phwvsical svstem itself. A block di-
agram contains information concerning dvnamic behawvior. but it does not include anwy
information on the physical construction of the system. Consequently. many dissimilar
and unrelated systems can be represented by the same block diagram.

It should be noted that in a block diagram the main source of energy is not explicitly
shown and that the block diagram of a given system is not unique. A number of different
block diagrams can be drawmn for a system. depending on the point of view of the analwvsis.

[Summing Poinr.] Referring to Figure 2—2. a circle with a cross is the syvmbol that
indicates a summing operation. The plus or minus sign at each arrowhead indicates
whether that signal is to be added or subtracted. It is important that the gquantities being
added or subtracted have the same dimensions and the same units.

[Branch Poirnrl A branch poinr is a point from which the signal from a block goes
conculrrently to other blocks or summing points.

(Block Diagram of a Closed-Loop System.] Figure 2—3 shows an example of a
block diagram of a closed-loop system. The output C(5) is fed back to the summing
point, where it is compared with the reference input R({s). The closed-loop nature of
the syvstem is clearly indicated by the figure. The output of the block. C(s5) in this case.
is obtained by multiplyving the transfer function ' (s) by the input to the block., E(s). Any
linear control systemm may be represented by a block diagram consisting of blocks, sum-
ming points, and branch points.

When the output is fed back to the summing point for comparison with the input, it
is necessary to convert the form of the output signal to that of the input signal. For
example. in a temperature control system, the output signal is usually the controlled
temperature. TThe output signal. which has the dimension of temperature,. must be con-
verted to a force or position or voltage before it can be compared with the input signal.
This conversion is accomplished by the feedback elemment whose transfer function is /< (s).
as shown in Figure 2—4. The role of the feedback element is to modify the output before
it is compared with the input. (In most cases the feedback element is a sensor that measures

Summing Ri(s) E(s) (s
point Branch —+ G(5)
point

i > 3 R{s) E(s) Gis) y C(s) B(s)

igure 23 —-——{:% | (s .
Block diagram of a Figure 2—4 H(s)
closed-loop system. Closed-loop system.

the output of the plant. The output of the sensor is compared with the system input. and
the actuating error signal is generated.) In the present example. the feedback signal that
is fed back to the summing point for comparison with the input is B(s) = H(s)C(s).

(Open-Loop Transfer Function and Feedforward Transfer Function. Refer-
ring to Figure 2—4. the ratio of the feedback signal B(s) to the actuating error signal
E(s) is called the operi-loop transfer furnctior:. That is, B(s)

Open-loop transfer function = m = G(s)H(5)

The ratio of the output C(s5) to the actuating error signal F(s5) is called the feed-

Jorward transfer fisrictiorn, so that C(s)

Feedforward transfer function = T) = G(s5)
s
If the feedback transfer function /A (s) is unity. then the open-loop transfer function and
the feedforward transfer function are the same.
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[Closed-Loop Transfer Function. | For the system shown in Figure 2— 4. the output

C(s5) and input R{(s) are related as follows: since C(s) = G(s)E(s)
F((s) = R(s) — B(s) = R(s) — H(s)T(s)
eliminating ~(s) from these equations gives C(s) = G(S)[R(S) — H(j)c(s)]
_ (s G () S
o1 R(s) 1 +— G(s)FH(s) (=2—3>

The transfer function relating < (s5) to R(s) is called the closed-foop rransfer fierncriorn. Tt
relates the closed-loop syvstem dyvnamics to the dyvnamics of the feedforward elements
and feedback elements. From Equation (2—3). C(s5) is given by

(s

CCS) = T Gy sy R

Thus the output of the closed-loop system clearly depends on both the closed-loop trans-
fer function and the nature of the input.

Obtaining Cascaded, Parallel, and Feedback (Closed-Loop) Transfer Functions
with MATLADB. In control-systems analysis, we frequently need to calculate the cas-
caded transfer functions, parallel-connected transfer functions. and feedback-connected
(closed-loop) transfer functions. MATL.AB has convenient commands to obtain the cas-
caded. parallel. and feedback (closed-loop) transfer functions.

Suppose that there are two components ,(s) and Gz(s) connected differently as
shown in Figure 2—5 (a). (b). and (c). where ST num?>2

Cralliy— denl ~ N — den?2
To obtain the transfer functions of the cascaded system. parallel system. or feedback
(closed-loop) system, the following commands may be used:
[mMum, den] = series(num1 ,denl, num2,.den2)
[num, den] = parallel(inum1 ,den1 , num?2, den2)
[Nnum, den] = feedback(inuml ,denl,num2,den2)
As an example, consider the case where

iy = 10 ~_ numl G ( o 5 _ num?22
W) = & 1 25 + 10 denl ) = e a s e
MATLAB Program 2—1 gives C(s5)/R(s) = num/den for each arrangement of G;(s)

and G5(s5). Note that the command .
printsys{(num,den)

displays the num /den [that is. the transfer function C(s)/’R{s)] of the system considered.

(s sy
_»—l CFs) I—»—l Cra(s) I—>*
Ca)y

Ry
(s (s
2
€=

L=
e 2=

(a) Cascaded swsterrn: (b)) parallel system: () feedback (closed-loop) systerm

MATLAB Program 2-1

[num, den] = parallel(num1,denl1,num2,den2);
printsys(num,den)

58”2 + 20s + 100

numl = [10];
denl =[1 2 10];:

num?2 = [5]; num/den =
den2 — [—I 5]. sN3 + 7sN2 + 20s + 50
[num, den] = seriesthnum1,den1,num2,den2); [num, den] = feedback(num1,denl,num2,den2);
printsys(num,den) . printsys(num,den)
10s + 50
num/den = =
s"3 + 7s”N2 + 20s + 50 num/den sN3 + 7sA2 + 20s + 100

(Automatic Controllers.] An automatic controller compares the actual value of
the plant output with the reference input (desired value). determines the dewviation. and
produces a control signal that will reduce the deviation to zero or to a small value.
The manner in which the auvtomatic controller produces the control signal is called
the conrrol acrion. Figure 2—6 is a block diagram of an industrial control system. which

Automatic controller

Figure 2—6 r . T K

Block diagram of an industrial Reference | LError detector i

control system, which consists input | - i Output
of an automatic controller, Set Amplifier Th- Actuator = Plant

an actuator. a plant, and a (point |

Sensor (measuring element).

Sensor |

consists of an automatic controller. an actuator, a plant, and a sensor (mMmeasuring ele-
ment). The controller detects the actuating error signal. which is usually at a very low
power level, and amplifies it to a sufficiently high level. The output of an automatic
controller is fed to an actuator. such as an electric motor. a hvdraulic motor. or a
pneumatic motor or valve. (The actuator is a power dewvice that produces the input to
the plant according to the control signal so that the output signal will approach the
reference input signal.)

Control Theory-Part2 all Page 6 /52 Dr. Mohsen Soliman, ACC Manager



The sensor or measuring element is a device that converts the output variable into an-
other suitable variable. such as a displacement. pressure. voltage. etc.. that can be used to
compare the output to the reference input signal. This element is in the feedback path of
the closed-loop system. The set point of the controller must be converted to a reference
input with the same units as the feedback signal from the sensor or measuring element.

[Classifications of Industrial Controllers.] Most industrial controllers may be
classified according to their control actions as:
1. Two-position or on—off controllers 4. Proportional-plus-integral controllers
2. Proportional controllers 5. Proportional-plus-derivative controllers
3. Integral controllers 6. Proportional-plus-integral-plus-derivative controllers
Most industrial controllers use electricity or pressurized fluid such as oil or air as
powel sources. Consequently. controllers mawv also be classified according to the kind of
power emploved in the operation. such as pneumatic controllers, hvdraulic controllers,
or electronic controllers. What kind of controller to use must be decided based on the
nature of the plant and the operating conditions. including such considerations as safetw.
cost, availability, reliability, accuracy. weight. and size.

{(Two-Position or On—Off Control Action] In a two-position control system. the
actuating element has only two fixed positions. which are. in many cases. simply on and
off. Two-position or on—oftf control is relatively simple and inexpensive and. for this rea-
sOo1, is very widely used in both industrial and domestic control syvstems.

I et the output signal from the controller be 2 (7) and the actuating error signal be e(r).
In two-position control. the signal w((7) remains at either a maximum or minimum wvalue,
depending on whether the actuating error signal is positive or negative. so that

() — U, for e(r) = O uw(r)y = 5, for e(r) =< O
where L7y and /> are constants. The minimum wvalue L/; is usually either zero or — L7 .
Two-position controllers are generally electrical devices, and an electric solenoid-oper-
ated valve is widely used in such controllers. Pneumatic proportional controllers with very
high gains act as two-position controllers and are sometimes called pneumatic two-
position controllers.

Figures 2—7(a) and (b)) show the block diagrams for two-position or on—off controllers.
The range through which the actuating error signal must mowve before the switching occurs

Figure 27 Differential gap.,

(a) Block diagram of U, — U ‘1"

an on—off controller: e L C ; S N _:‘...._
(b) block diagram of CE; . B .

an on—off controller f — f Uz

with differential gap. (2) ®)

is called the differential gap. A differential gap is indicated in Figure 2—7(b). Such a dif-
ferential gap causes the controller output «(7) to maintain its present value until the ac-
tuating error signal has mowved slightly bevond the zero value. In some cases, the differential
eap is a result of unintentional friction and lost motion: howewver., guite often it is inten-
tionally provided in order to prevent too-frequent operation of the on—off mechanism.
Consider the liquid-level control system shown in Figure 2—8(a). where the electromag-
netic valve shown in Figure 2—8(b) is used for controlling the inflow rate. This valve is either
open or closed. With this two-position control, the water inflow rate is either a positive con-
stant or »ero. As shown in Figure 29, the output signal continuously mowves between the
two limits required to cause the actuating element to move rom one lNxed position to the
other. Notice that the output curve follows one of two exponential curves, one correspon-
ding to the filling curve and the other to the emptyving curve. Such output oscillation be-
tween tbwo limits is a typical response characteristic of a system under two-position control.

Movable h) Differential
@ & my ® = { /@
@, | —° . Figore2 VAVAVAVAVARR N
Figure 2-8 | Float Magnetic [ evel j()-versus- }
(a) Liquid-level -y C}t/ curve for the system
((:Sglglglssfjrt:g;.nmic ol . l 77 shown in Figl]l't‘. 2—8(8).
valve. l > > R
0 [

R

From Figure 2—9_, we notice that the amplitude of the output oscillation can

be reduced by decreasing the differential gap. The decrease in the differential

cap. howewver. iIncreases the number of on—olf switchings per minute and reduces

the useful life of the component. The magnitude of the differential gap must be

determined from such considerations as the accuracy reqguired and the life of
the component.

(Proportional Control Action.] For a controller with proportional control action.
the relationship between the output of the controller () and the actuating error signal

e(r) is u(r) = K, e(r) U ()

or, in Laplace-transformed guantities. —_— =
prae q ' E(s)

Ky

where K, is termed the proportional gain.
Whatever the actual mechanism may be and whatever the form of the operating
power, the proportional controller is essentially an amplifier with an adjustable gain.
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(Integral Control Action.] In a controller with integral control action. the value of
the controller output () is changed at a rate proportional to the actuating error signal

e(t). That is. Fee (2 ’
(r) & = K;e(r) or w(r) = KJ/ e(r) dr where K; is an adjustable
it o LA(s) K
constant. The transfer function of the integral controller is T} = -
K K
(Proportional-Plus-Integral Control Action.] The control action of a proportional-
prlus-integral controller is defined by w(r) = Koe(r) + Kp -/-Ie(r) dr
T o
U(s !
or the transfer function of the controller is L = Kp(l —+ 1 )
F(s) T:s

where T; is called the innregral rirrmre.

(Proportional-Plus-Derivative Control Action.] The control action of a proportional-
de(r)
plus-derivative controller is defined by () = Kpe(r) + K, T, —ar
L (s) . i . . .
and the transfer function is ﬁ = K, (1 —+ 7T,5) where 7T, is called the derivative tirne.
5
(Proportional-Plus-Integral-Plus-Derivative Control Action.] The combination of
proportional control action. integral control action. and derivative control action is
termed proportional-plus-integral-plus-derivative control action. It has the advantages
of each of the three individual control actions. The equation of a controller with this

_ - K, [* de(r)
combined action is given by w(t) = Kpe(t) + — e(r)dr + KT, i
o « Jo ‘
or the transfer function is ﬂ = K (1 -+ + T,us
(=) il i

where K, is the proportional gain, 7; is the integral time, and 7} is the derivative time.
I'he block diagram of a proportional-plus-integral-plus-derivative controller is shown in

Fleure 2-10. Disturbance § D(s)
Figure 2-10 E(s) K,(1 + Tis + T; Tus?) U(s) R(s) o G C(s) F‘igure 2-11
Block diagram of a = Ts —— 1(5) 2s) Closed-loop
proportional-plus-integral- f Sttgsz‘ilf:;tsulﬁjitéid
plus-derivative controller. His) == '

(Closed-Loop System Subjected to a Disturbance.] Figure 2—11 shows a closed-
loop syvstem subjected to a disturbance. When two inputs (the reference input and dis-
turbance) are present in a linear time-invariant system, each input can be treated
independently of the other: and the outputs corresponding to each input alone can be
added to give the complete output. The way each input is introduced into the system is
shown at the summing point by either a plus or minus sign.

Consider the system shown in Figure 2—11. In examining the effect of the distur-
bance D(5). we may assume that the reference input is zero: we may then calculate the
response Ci(s) to the disturbance only. This response can be found from

Cpis) _ Gs(s)

D(=s) 1 + GH{s5)Ga(s)H(s)
On the other hand, in considering the response to the reference input R(s), we may
assume that the disturbance is zero. Then the response Cgr(s) to the reference input R(s)
can be obtained from Cr(s) G(5)G=(s)

R(s5) 1 + G(s)Ga(s)H(s)
The response to the simultancous application of the reference input and disturbance
can be obtained by adding the two individual responses. In other words, the response
C(5) due to the simultaneocus application of the reference input R(s) and disturbance
D (s) is given by
(== 7 ©(s) = Cr(s) + Cp(s)= =<1C),
1 + G(5)GL(s)HI(s)

Consider now the case where |G (s)H(s5)| = 1 and |G,(s)G5(s)H(s)| = 1. In this
case. the closed-loop transfer function Cgi(s) /D (s) becomes almost zero. and the effect
of the disturbance is suppressed. This is an advantage of the closed-loop system.

Omn the other hand. the closed-loop transfer function Cgr(s) /R(s) approaches 1 /H (s)
as the gain of G(s5) G (s)H (5) increases. This means that if |G (s5)Go(s)H (s)| = 1. then
the closed-loop transfer function Cgr(s) /R(s) becomes independent of GG (s5) and Gi(s)
and inversely proportional to A (s). so that the variations of G (s5) and G5>(s) do not
affect the closed-loop transfer function Cg(s)/R(s). This is another advantage of the
closed-loop svstem. It can easily be seen that any closed-loop system with unity feedback,
H({s) = 1. tends to equalize the input and output.

[Gl(.S‘)R(S) —+ D(s}]

[ Procedures for Drawing a Block Diagram.] To draw a block diagram for a sys-
tem, first write the equations that describe the dvnamic behavior of each component.
Then take the Laplace transforms of these equations, assuming zero initial conditions,
and represent each Laplace-transformed equation individually in block form. Finally, as-
semble the elements into a complete block diagram.

As an example, consider the RC circuit shown in Figure 2—12(a). The equations for

this circuit are . e;, — €, i dr —
I = T (24} e, — ‘fi (2*3}
The Laplace transforms of Equations (2—4) and (2—5). with zero initial condition. become
Fi(s) — E_,(s S I(s) -
I(s) — (s) (s) (2—6) E(s) = 22 (2—7)
F e Cs
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Equation (2—6) represents a summing operation. and the corresponding diagram is
shown in Figure 2—12(b). Equation (2—7) represents the block as shown in Figure 2—-12(c).
Assembling these two elements. we obtain the overall block diagram for the swvstem as
shown in Figure 2—12(d).

(Block Diagram Reduction.] It is important to note that blocks can be connected
in series only if the output of one block is not affected by the next following block. If
there are anv loading effects between the components. it is necessalrv to combine these
components into a single block.

Aoy number of cascaded blocks representing nonloading components can be
replaced bwv a single block. the transfer function of which is simply the product of the
individual transfer functions.

Figure 2—12 L i

(a) RC circuit: (ajo AR i < E(s) 1 (=) (b
(b)) block diagram /ﬁ' ®”
representing e; ! [ €

Equation (2—6): i _‘_/ —I_

(c) block diagram = O

representing )

L oation (5 7y © o o Ei(s) T e a1 | Eoo
() block diagram of —_— e ” Cs

the RC circuit. C's >

A complicated block diagram involving many feedback loops can be simplified by
a step-by-step rearrangement. Simplification of the block diagram by rearrangements
considerably reduces the labor needed for subsequent mathematical analysis. It should
be noted. however, that as the block diagram is simplified, the transfer functions in new
blocks become more complex because new poles and new zeros are generated.
Consider the system shown in Figure 2—13(a). Simplify this diagram.

By moving the summing point of the negative feedback loop containing /H, outside the posi-
tive feedback loop containing /. we obtain Figure 2—13(b). Eliminating the positive feedback loop,
we have Figure 2—13(c). The elimination of the loop containing 77, /(| gives Figure 2—-13(d). Finally,
celiminating the feedback loop results in Figure 2—-13(e).

H
(€51

c R + c
—_ @-»— Gy [ G, r G —--@o-@-»(%»— G P & | &

(a) Hy (b)

t o ”
H;
9] "’ G, =
R
R C G16G2G3 c R G1G2GH C
—_— _ GG ) 6 e T 1 - GG, + GoGaHs — | i iceor oo P
1 -G G-H, (d) ‘ — UGy + Gabaid) + G Gas

Figure 2—13 (a) Multiple-loop system: (b)—(e) successive reductions of the block diagram shown in (a).

Notice that the numerator of the closed-loop transfer function C(s)/R(s) is the product of the
transfer functions of the feedforward path. The denominator of C(s)/R(s) is equal to
1+ Z (product of the transfer functions around each loop)
=1+ (GG, + GG, + GGy,Gy) = 1 — GG H, + GGl + GGG

(The positive feedback loop yields a negative term in the denominator.)

24 (MODELING IN STATE SPACE]
In this section we shall present introductory material on state-space analysis of control
systems.

|Modern Control Theory.l The modern trend in engineering systems is toward
ereater complexity., due mainly to the requirements of complex tasks and good accu-
racy. Complex systems may have multiple inputs and multiple outputs and may be time
varyving. Because of the necessity of meeting increasingly stringent requirements on
the performance of control systems. the increase in system complexity. and easy access
to large scale computers., modern control theory. which is a new approach to the analy-
sis and design of complex control systems. has been developed since around 1960. This
new approach is based on the concept of state. The concept of state by itself is not
new, since it has been in existence for a long time in the field of classical dynamics and
other fields.

|Modern Control Theory Versus Conventional Control Theory.| Modern con-
trol theory is contrasted with conventional control theory in that the former is appli-
cable to multiple-input. multiple-output systems. which may be linear or nonlinear,
time invariant or time varying. while the latter is applicable only to linear time-
invariant single-input. single-output systems. Also, modern control theory is essen-
tially time-domain approach and frequency domain approach (in certain cases such as
H-infinity control), while conventional control theory is a complex frequency-domain
approach. Before we proceed further., we must define state, state variables, state vector,
and state space.
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The state of a dynamic system is the smallest set of variables (called srare
variables) such that knowledge of these variables at¢ = 7,5, together with knowledge of
the input for ¢ = ¢y, completely determines the behavior of the system for any time
r = tg,.

Note that the concept of state is by no means limited to physical systems. It is appli-
cable to biological systems., economic systems, social systems, and others.

|State Variables.| The state variables of a dynamic system are the variables mak-
ing up the smallest set of variables that determine the state of the dynamic system. IT at

least n variables x;, x>, ..., x,, are needed to completely describe the behavior of a dy-
namic system (so that once the input is given for 7 = 7; and the initial state at f = 7, 1s
specified, the future state of the system is completely determined). then such n variables
are a set of state variables.

Note that state variables need not be physically measurable or observable quantities.
Variables that do not represent physical gquantities and those that are neither measura-
ble nor observable can be chosen as state variables. Such freedom in choosing state vari-
ables is an advantage of the state-space methods. Practically, however, it is convenient
to choose easily measurable quantities for the state variables, if this is possible at all. be-

cause optimal control laws will require the feedback of all state variables with suitable
welighting.

|State Vector.| If zz state variables are needed to completely describe the behavior
of a given system. then these 7z state variables can be considered the 2z components of a
vector x. Such a vector is called a srare vecror. A state vector is thus a vector that deter-
mines uniquely the system state x(7) for any time 7 = 7,.0nce the state at7z = 75is given
and the input (7)) for t = 1, is specified.

|State Space] The n-dimensional space whose coordinate axes consist of the x;
axis. x, axis. ... . X, axis. where x;., x>.....x, are state variables. is called a srare space. Any
state can be represented by a point in the state space.

|State-Space Equations. In state-space analysis we are concerned with three types
of variables that are involved in the modeling of dynamic systems: input variables, out-
put variables. and state variables. As we shall see in Section 2—5. the state-space repre-
sentation for a given system is not unique, except that the number of state variables is
the same for any of the different state-space representations of the same system.

The dynamic system must involve elements that memorize the values of the input for
I = r,.Since integrators in a continuous-time control system serve as memory devices,
the outputs of such integrators can be considered as the variables that define the inter-
nal state of the dynamic system. Thus the outputs of integrators serve as state variables.
The number of state variables to completely define the dynamics of the system is equal
to the number of integrators involved in the system.

Assume that a multiple-input. multiple-output system involves 7z integrators. Assume

also that there are r inputs wu,(t), ee>(t), ... . u, () and s outputs v, (), v>(&), ... . v,.(£).
Define 7 outputs of the integrators as state variables: x (), x>(¢)., .... x,(r) Then the
system may be described by
“tl(t) :fl(x19x2>~-'sxrz;ulsu2:---->ur;r) -"—fz(f) :fZ(x19x2’"'9xn;u19u2""’ur;r)
= = = N = = xn(‘r) - fn(xlz-st""xn; My, Uz, ... , U, 3 I) (278)
The outputs y,(7), vo(r)..... ¥V, (r) of the system may be given by
»m(r) = 81(I1a Kos ovonn X3 Uy, o,y .-, U, f) »w(r) = 82(x19 Koo oen s XSy, oy oo 5 U3 f)
. . .- . ; Vorrl(2) = (X1 Xon oo L Xt W U, L2, ) (2-9)
If we define
_xl(t)_ _fl(xlezA‘.ﬁAx,,: Edy o Bdo o . .. . L, t)
x5(1) Fol X e Xoe oo o s X, i By oo L 8L, L F)
x(r) = : . F(x, u, t} - : .
| x,.(2) _] | Fa(xcrs xon oo Xt e s, ke, 1)
_)’1(3)_ _gl(xlsxzs---sxn; By, o, oo 5 U, f) e (1)
»2(1) gz(xlax2>~~»axn; R R 2 o f) (1)
y(r) = : cg(x, w, 1) — ) .ou(r) = ]
[ V. (2) _ | (X1, Xos oL XS M U 22,3 T) e, (1)
then Equations (2—8) and (2—9) become > !
x(r) = F(x,u, ) (2—10) ¥(r) = g(x,u, 1) (2—11)

where Equation (2—10) is the state equation and Equation (2—11) is the output equation.
If vector functions f and/or g involve time r explicitly, then the system is called a time-
varying system.

If Equations (2—10) and (2—11) are linearized about the operating state. then we
have the following linearized state equation and output equation:

x(z) = A()x(r) + B()u(z) (2—12) ¥(r) = C)x(r) + D(r)u(r) (2—13)
where A(r) is called the state matrix. B(7) the input matrix. C(r) the output matrix. and
I»(7r) the direct transmission matrix. (IDetails of linearization of nonlinear systems about
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Figure 2—14 > D(r)y
Block diagram of the @ < ()

B . wir b 2 L)
h_near, continuous- I_—I/|, B fr N o
time control system
represented in state space.

A

the operating state are discussed in Section 2—7.) A block diagram representation of
Equations (2—12) and (2—13) is shown in Figure 2—14.

It vector functions f and g do not involve time 7 explicitly then the system is called a
time-invariant system. In this case., Equations (2—12) and (2—13) can be simplified to

x(r) = Ax(r) + Bu(r) (2—14) ¥y(zr) = Cx(r) + Du(r) (2—15)
Equation (2—14) is the state equation of the linear. time-invariant system and Equation
(2—15) is the output eguation for the same system. In this book we shall be concerned
mostly with systems described by Equations (2—14) and (2—15).

In what follows we shall present an example for deriving a state equation and output
equation.

EXAMPLE 22|

Consider the mechanical system shown in Figure 2—15. We assume that the system is linear. The
external force u(f) is the input to the system. and the displacement y(r) of the mass is the outpul.
The displacement y(7) is measured from the equilibrium position in the absence of the external
force. This system is a single-input. single-output system.

From the diagram. the system equation is my + by + kv = u (2—16)
This system is of second order. This means that the system involves two integrators. Let us define
state variables x,(7) and x>(¢) as x.(8) = y(1) x5(r) = ¥»(r) PPy
Then we obtain X, = x> % =

=

1 1 w(7)
x2=;(—ky—by)+;u f

or
— i
-’Zl
. k b 1 _ M
Xy = ——— X — — Xz + —u (2—18)
ra Fre ra
Figure 2—15
Mechanical system.
The output equation is ¥y = x (2—19)
e 1 X Xz
— Tar h— J‘

J- Xy = W

In a vector-matrix form. Equations (2—17) and (2—18) can be written as

IS IV | P [ .

The outrput equation. Equation (2—19). can be written as

y = [1 Ojl:i;:l (2—21)

Equation (2—20) is a state equ"n:ion and Equation (2—21) is an output equation for the system.

Figure Z2—16
Block diagram of the et
mechanical svstermm f

shown in Figure 2—15

MR EE

Thew are in the standard form: — AxX + B v = Cx + Dus
where
A = o B|:0:|- C =01 0]. D = 0
e 1
Frr Fri
Figure 2—16 is a block diagram for the system. WNotice that the outputs of the integrators are state
variables.

(Correlation Between Transfer Functions and State-Space Equations.] In what
follows we shall show how to derive the transfer function of a single-input, single-output
system from the state-space equations.

I et us consider the system whose transfer function is given by

Yis) _ < 222
This system may be represented in state space by the following equations:
X — AX + Bu (2-23) v = Cx + Duwu (2—24)

where x is the state vector. ¢ is the input. and v is the output. The Laplace transforms of
Equations (2—23) and (2—24) are given by

sX(s) — x(0) = AX(s) + BU(s) (2—25) Y(s5) = CX(5) + DU (s5) (2—26)
Since the transfer function was previously defined as the ratio of the Laplace transform

of the output to the Laplace transform of the input when the initial conditions were
zero, we set x(0) in Equation (2—25) to be zero. Then we have

sX(s5) — AX(s) = BU(s) or (sI — ANX(s) = BU (s5)
By premultiplying (sI — A) ! to both sides of this last equation. we obtain
X(s) = (sI — A TBU (s) (2—27)
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Bv substituting Equation (2—27) into Equation (2—26). we get

Y(s) = [C(sI — AY 'B + D|U(s) (2—28)
Upon comparing Equation (2—28) with Equation (2—22). we sece that
G(s) — C(sI — AY 'B + D (2—29)
This is the transfer-function expression of the system in terms of A . B. C. and .
Note that the right-hand side of Equation (2—29) involves (sI — A) ' Hence G(s)
can be written as Q(s)
G(s) = ——
|lsI — A
where Q(s) is a polyvnomial in s. WNotice that |sI — A is equal to the characteristic poly-

nomial of G (s5). In other words. the eigenvalues of A are identical to the poles of G (s).

IEXAMPLE 23|

Consider again the mechanical system shown in Figure 2—15. State-space equations for the system
are given by Equations (2—20) and (2—21). We shall obtain the transfer function for the system from
the state-space equations. By substituting A, B. C. and D into Equation (2—29). we obtain

o o 1 'l o
G(s) = C(sI — A)Y'B + D =[1 0] [é s]— kb 1 | +o

s —1 1 o s
G(s) = [1 ol ~ _, b 1

23
—1 5 —+= — 1
™~Note thhat I > _ 1 FrE
— 5 4+ — - o Fia Ve
T & -+ — 5 + —F _— &
e FrR FrR

(Refer to Appendix « for the inverse of the 2 > 2 matrix. ) Thus, we have

s+£ 1
1 FPE O 1
G(s) = [1 O] S > e s 1 rres< 4+ s+ K
5T + — &5 + — _ s | —_— |
e ez T e

which is the transfer function of the syvstemm. The same transfer function can
be obtained from Equation (2—16).

| Transfer Matrix.| Next.consider a multiple-input. multiple-output system. Assume
that there are r inputs ., 45, ... , ¢,, and mz outputs VvV,, V>, ... . V,,- Define
M 251
) o
y — ) . u = i
y’f& un“
The transfer matrix G(s) relates the output Y (s5) to the input U(s).or Y (s5) = G(s)U(s)
where G(s5) is given by G(s) = C(sT — A) 'B + D

[The derivation for this equation is the same as that for Equation (2—29).] Since the
input vector  is » dimensional and the output vector ¥ is sz dimensional. the transfer ma-
trix G(s) is an sz > r matrix.

2—5 [STATE-SPACE REPRESENTATION OF SCALAR
DIFFERENTIAL EQUATION SYSTEMS

A dyvnamic system consisting of a finite number of lumped elements may be described
by ordinary differential equations in which time is the independent variable. By use of
vector-matrix notation. an s#th-order differential equation may be expressed by a first-
order vector-matrix differential equation. If s elements of the vector are a set of state
variables. then the vector-matrix differential equation is a srare equation. In this section
we shall present methods for obtaining state-space representations of continuous-time
systems.

[ State-Space Representation of #th-Order Systems of Linear Differential Equa
tions in which the Forcing Function Does Not Involve Derivative Terms.
Consider the following szth-order systems: () (r—1)
y -+ a,y -+ -+ anfl_}.} -+ a,y — u (2730)
(e,z— 17
Noting that the knowledge of y(0), ¥(0), ..., » (0), together with the input «(z) for

r = 0, determines completely the future behavior of the system. we may take
(rz—1)
y(r), ¥(r)..... » (r) as aset of n state variables. (Mathematically. such a choice of state

variables is quite convenient. Practically, however, because higher-order derivative terms
are inaccurate, due to the noise effects inherent in any practical situations, such a choice
of the state variables may not be desirable.) IL.et us define

X1 = ¥ Xz = ¥ - - - x,,

(re—1)

y
Then Equation (2—30) can be written as
..ifl — X2 _i‘z == X3 - - - xr{—l = Xn x,{ —a,, Xy Tt T oagx, -+
or X — Ax + B (2—31)
- O 1 O ... (9] O
B O o 1 .- (e} O
Ao - - - . .
where N = ) - N = - - - - - B = -
i o o o .- 1 o
Xx,, )
—a,, —a,, s -} T i, 1
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The output can be given bwv ECH

y=10[(1 o - o] -
or y = Cx (2—32) Ao
where C = [1 ) 0]

[WNWote that 2 in Equation (2—24) is zero.] The first-order differential equation. Equa-
tion (2—31). is the state equation. and the algebraic equation. Equation (2—32). is the
output equation. Note that the state-space representation for the transfer function
system ¥ (s) 1 is given also by Equations (2—31)

U(s) 5" + a;s” ' + -+ + a, 15 + a, and (2—32).

State-Space Representation of nth-Order Systems of Linear Differential Equai
tions in which the Forcing Function Involves Derivative Terms.] Consider the dif-
ferential equation system that involves derivatives of the forcing function. such as
Yo @y v a, v ta,y = byl + b, w4+ b, a + b (2-33)
The main problem in defining the state variables for this case lies in the derivative
terms of the input «. The state variables must be such that they will eliminate the de-
rivatives of « in the state equation.
One way to obtain a state equation and output equation for this case is to define the
following s variables as a set of n state variables:
x, =Y —Bou X, =V —Bott —B,u =x, — Bu X3 =V — Boii — Bt — Bou = k> —Fou
(rn—1) (rm—1) (re—2)

X — y T BD“ T Blz't T Bn—ziz T anlu - x‘.-:!.fl T anlu (2734)
where Bg. B1-. B2. --- .3, are determined from
Bo = b L1 = by — a8, Bz — b — a8, — azBo Bz = bs — a, B>, — a3, — azB
anl - bnfl - aanfZ -ttt T ar;72Bl - anleO (2_3:})

With this choice of state variables the existence and unigueness of the solution of the
state equation is guaranteed. (Note that this is not the only choice of a set of state vari-
ables.) With the present choice of state variables. we obtain

J\‘fl = x> + Blu ,X..“-;_ = X5 + Bzu - - - xn—l = x, + Bn—lu
—"‘En = —dp,X1 — d, 1X2 — " — di1x,, + Bnu (2_36)
where Bn is given b}r Bu - bn — ay )an e € IBI — a, IBO

[To derive Equation (2—36). see Problem A—2—6.] In terms of vector-matrix equations.
Equation (2—36) and the output equation can be written as

_Jtl_ _0 1 O T 0_ _xl_ _B]_ Xq
Xo 0] 0] 1 --- 0 X2 £z X2
] ) ) ) R I R y=1[10 --- 0] [|[+Bou
X”,I 0] (8] O Tt 1 B P | Bn—l X
x‘f’i _ |—a, —a, 1 —dad, > "~ dy|| X, _| _Bﬂ —
or X = Ax + Bu (2-37) y = Cx + Du (2—38)
where | X1 BEe) 1 0 o | C B,
x5 9] 0 1 0] B2
x — . A —| - ) - - s B = - . C=[10 ---0], D=pBg = bg
xn—l O O 0 -t 1 ,8‘“71
| X | | —a,, —a, , —d, > " dy_| | Bn_

In this state-space representation. matrices A and C are exactly the same as those for
the system of Equation (2—30). The derivatives on the right-hand side of Equation (2—-33)
affect only the elements of the B matrix.

Note that the state-space representation for the transfer function

Y(s)  bos" + bys” ' + -+ b, a5 + b, is given also by Equations (2—37)

U(s) s+ a7+ -+ a,, s + a, and (2-38).

There are many ways to obtain state-space representations of systems. Methods for
obtaining canonical representations of systems in state space (such as controllable canon-
ical form. observable canonical form. diagonal canonical form. and Jordan canonical
form) are presented in Chapter 9.

MATILAB can also be used to obtain state-space representations of systems from
transfer-function representations. and vice versa. This subject is presented in Section 2—6.

(TRANSFORMATION OF MATHEMATICAL MODELS WITH MATLAB]

MATLAB is quite useful to transform the system model from transfer function to state
space, and vice versa. We shall begin our discussion with transformation from transfer
function to state space.

Control Theory-Part2 all Page 13 /52 Dr. Mohsen Soliman, ACC Manager




I.et us write the closed-loop transfer function as

Y (s) . numerator polynomaial in s __ mum
U (s)  denominator polynomial ins  den
Once we have this transfer-function expression. the MATLAB command
[A,.B,C,D] = tf2ss(num,den)

will give a state-space representation. It is important to note that the state-space repre-
sentation for any system is not unique. There are many (infinitely many) state-space
representations for the same syvstem. The MATIL. AB command gives one possible such
state-space representation.

[Transformation from Transfer Function to State Space Representation.]
Consider the transfer-function system

Y (s) s _ = (2—39)
Lr(s) (s + 10)(s® + 4d4s + 16) 53 4+ 1452 + 565 + 160
There are many (infinitely many) possible state-space representations for this systerm.
One possible state-space representation is
o O 1 o a, o X1
|:x2:| — I: o o 1:||:x2:| + I: 1:|u » =10t o |: :| + [O]ze
X — 160 —56 — 14 X — 14

Aanother possible state-space representation (ﬂmong infinitely many alternatives) is

X —14 —S6 —160 1
s — O —+ (8] e (2—40)
X (8]

» = [O 1 I: :| —+ [O Jee (2—41)

MATI AB transforms the transfer function given by Equation (2—39) into the
state-space representation given by Eqguations (2—340) and (2—41). For the example
swvstem considered here. WIATI AB Program 2—2 will produce matrices . B, C.
and /.

MATLAB Program 22 14 s6 160 1

num = [1 O] :; A=_1 _O N o B = O D= o
den =11 14 56 160]; o 1 o O

[A,B,C,[D] = tf2ss(num,den) C = O 1 O

[Transformation from State Space Representation to Transfer Function]| To
obtain the transfer function from state-space equations. use the following command:
[Nnum,den] = ss2tf(AL.B,C,D,iu)
iu must be specified for syvstems with more than one input. For example. if the system
has three inputs (1, 42, ¢43). then iu must be ecither 1. 2, or 3. where 1 implies «l1, 2
implies 12, and 3 implies 3.
If the svstem has only one input, then either [Num,den] = ss2tf(A,B,C,D)

or [mMum,den] = ss2tf(A,B,C,[D,1)
may be used. For the case where the system has multiple inputs and multiple outputs,
see Problem A—2—-12.

IEXAMPLE 2-4]|

Obtain the transfer function of the system defined by the following state-space equations:

X O 1 O X o X1
X = 0 (0} 1 X -+ 25 7 y=[1 0O O0O]| x>
Xa -5 —25 —5 X5 —120 x*3
MATLAB Program 2-3 will produce the transfer function for the given system. The transfer func-
tion obtained is given by Y (s) 255 + 5
U(s) s + 552 + 255 + 5

MATLAB Program 2-3
A=l0 1T O; O O 1; -5 -25 -5];

den 1.0000 5.0000 25.0000 5.0000
Yo FFEXE The same result can be obtained by

B =10;25; -12'?]; entering the following command: #¥***
C = [[1)] .O Ol; [num,den] = ss2tf(A,B,C,[D, 1)
’ num = 0 0.0000 25.0000 5.0000

[mMum,den] = ss2tf(A,B,C,[D)

nuM = 0 0.0000 25.0000 5.0000 den =1.0000 5.0000 25.0000 5.0000

2—7 [LINEARIZATION OF NONLINEAR MATHEMATICAL MODELS]

| Nonlinear Systems.| A system is nonlinear if the principle of superposition does
not apply. Thus. for a nonlinear system the response to two inputs cannot be calculated
by treating one input at a time and adding the results.

Although many phyvsical relationships are often represented by linear equations,
in most cases actual relationships are not quite linear. In fact, a careful study of phvs-
ical svystems reveals that even so-called “"linear systems’™ are really linear only in lim-
ited operating ranges. In practice. many electromechanical systems, hvdraulic systems.
pPneumatic systems. and so on. involve nonlinear relationships among the variables.
For example. the output of a component may saturate for large input signals. There may
be a dead space that affects small signals. (The dead space of a component is a small
range of input variations to which the component is insensitive.) Square-law nonlin-
carity may occur in some components. For instance. dampers used in physical systems
may be linear for low-velocity operations but may become nonlinear at high veloci-
ties, and the damping force may become proportional to the square of the operating
velocity.
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| Linearization of Nonlinear Systems.| In control engineering a normal operation
of the system may be around an equilibrium point. and the signals may be considered
small signals around the equilibrium. (It should be pointed out that there are many ex-
ceptions to such a case.) Howewver. if the system operates around an equilibrium point
and if the signals involved are small signals. then it is possible to approximate the non-
linear system by a linear system. Such a linear system is equivalent to the nonlinear sys-
tem considered within a limited operating range. Such a linearized model (linear.
time-invariant model) is very important in control engineering.

The linearization procedure to be presented in the following is based on the ex-
pansion of nonlinear function into a Tavylor series about the operating point and the
retention of only the linear term. Because we neglect higher-order terms of the Taylor
series expansion., these neglected terms must be small enough: that is, the variables
deviate only slightly from the operating condition. (Otherwise, the result will be
inaccurate.)

|[Linear Approximation of Nonlinear Mathematical Models.| To obtain a linear
mathematical model for a nonlinear system. we assume that the variables deviate only
slightly from some operating condition. Consider a system whose input is x(7) and out-
putis y(r). The relationship between y(r) and x(r) is given by
y = f(x) (2—42)
If the normal operating condition corresponds to ¥, ¥, then Equation (2—42) may be
expanded into a Taylor series about this point as follows:

df 1 d*f
= f(x)=f(x) + —(x — X)) + =+ x — X))+ - 2-43
where the derivatives df/dx, d*f /dx>, ... are evaluated at x = Xx. If the variation x — X
is small, we may neglect the higher-order terms in x — X. Then Equation (2—43) may be
written as y =% + K(x — X) dfr (2—44)
— _ — K —
where By F(x) v | .
Equation (2—44) may be rewritten as y — vy = K(x — X) (2—45)
which indicates that v — ¥ is proportional to x — X. Equation (2—45) gives a linear math-

ematical model for the nonlinear system given by Equation (2—42) near the operating
point x = XxX. y = V.

Next. consider a nonlinear system whose output y is a function of two inputs x; and
X2, sO that v = f(xy. x2) (2—46)
To obtain a linear approximation to this nonlinear system. we may expand Equation (2—6)
into a Tavyvlor series about the normal operating point xX,, X-. Then Equation (2—46)

becomes L ar _ af .
v = f(x,.x5) + [_ (x, — x,) + — (x> — Xx2)
. 2f oy ’)2f X jzf
1 a _ .2 fe _ _ C — 2]
— | —=(x; — X + 22— (x; — X X> — X -+ x>, — X + ---
2! [Ox% (o 1) X, Ixo (> ez 2) ax3 (x2 2)
where the partial derivatives are evaluated at x; = X,;, x> = Xx». Near the normal oper-

ating point. the higher-order terms may be neglected. The linear mathematical model of
this nonlinear syvstem in the neighborhood of the normal operating condition is then
given by v — v = Kl(xl — El) -+ Kz(xz — 22)

af ay

where ¥y = f(x,. x2) K, = o, K = O

X=X, X2=X2 Hr T Xas X2 Xa

The linearization technique presented here is valid in the vicinity of the operating
condition. If the operating conditions vary widely. howewver. such linearized equations are
not adequate. and nonlinear equations must be dealt with. It is important to remember
that a particular mathematical model used in analysis and design may accurately rep-
resent the dynamics of an actual system for certain operating conditions. but may not be
accurate for other operating conditions.

[EXAMPLE 2-5| Linearize the nonlinear equation z = xy

in the region 5 = x = 7,10 = y = 12. Find the error if the linearized equation is used to calcu-
late the value of z when x = 5, v = 10.

Since the region considered is given by 5 = x = 7,10 = v = 12, choose x = 6, ¥ = 11. Then
Z = xy = 66. Let us obtain a linearized equation for the nonlinear equation near a point x = 6,
yv = 11.
Expanding the nonlinear equation into a Taylor series about point x = X, y = ¥ and neglecting
the higher-order terms, we have z — 2z =a(x — f} + b(y — 37)
A x a(x
where azg =y =11 bzg — ¥ = 6
o x X=X, y=¥ ay =%, y=7F
Hence the linearized equation is
z — 66 = 11(x — 6) + 6(y — 11) or z = 11x + 6y — 66
When x = 5, v = 10, the value of z given by the linearized equation is
z = 11lx + 6y — 66 = 55 + 60 — 66 = 49
The exact value of z is £ = xy = 50. The error is thus 50 — 49 = 1. In terms of percentage. the

error is 29%.
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|[EXAMPLE PROBLEMS AND SOLUTIONS |

A-—21. Simplify the block diagram shown in Figure 2—17.

Solution. First, move the branch point of the path involving /, outside the loop involving /H,. as
shown in Figure 2—-158(a). Then eliminating two loops results in Figure 2-18(b). Combining two
blocks into one gives Figure 2—18(c¢).

A—-2-2, Simplify the block diagram shown in Figure 2—-19. Obtain the transfer function relating C(s) and
R(s).
—[] —7
R(Cs) I I 99 C(s) R(s) @ C(s)

Figure 2—17
Block diagram Ca)
of a system. ‘--—

Figure 218 R(s) = L CCs) RE)* X5 C‘(s)
Simplified block (b 1+ GH> s Figure 2—19

diagrams for the Block diagram

system shown in R(s) | G+ H, | [ ] of a system. T

Figure 2—17. (<) I 1+~ GH> I

Ri(s) Cis) R(s) C(s)
G Go p— —_——| G+ 1|50 -——@—» R(s) Cis)
(a) —_— GG+ Gr o+ 1 frie
i t (b) I ©

Figure 2—20 Reduction of the block diagram shown in Figure 2—19.
Solution. The block diagram of Figure 2—19 can be modified to that shown in Figure 2—20(a).
Eliminating the minor feedforward path, we obtain Figure 2—20(b)., which can be simplified to
Figure 2—20(c). The transfer function C(s) /R(s) is thus given by
C(s5)
R(s)
The same result can also be obtained by proceeding as follows: Since signal X (s) is the sum
of two signals ) R(s) and R(s), we have

9!

— GG G+ 1

X(s) = Gy R(s5) + R(s)
The output signal C(s5) is the sum of G5 X (s) and R(s). Hence
C(s) = G X (5) + R(s) = Go[G,R(s) + R(s)] + R(s)
Aand so we have the same result as before:
C(s5)

— GG + G 1
R(s) 162 z +

A-2-3. Simplify the block diagram shown in Figure 2—21. Then obtain the closed-loop transfer function
C(s)/R(5).

v
R(=) @ [ <, | @ [ o | @ s C(s)

Figure 221 1 1
II H II V&

Block diagram
of a system. 1 >

1 H3 H
l' ref Ca (®) G1Ga
R(s) C(s) R(s) G, Ga G, G, C(s)
*®®- G G2 & Gs Ga 1+ Gy Gy Hy 1+ G5 Gy Hy
(a) f 1‘ R(s) G, G2 G5 Gy C(s)
H, H, 15 G, Gy Hy + G CaHo— Gy G3 Hy+ Gy Gy G G H,y Hy
Figure 2-22 Successive reductions of the block diagram shown in Figure 2-21. (c)

Solution. First mowve the branch point between (; and (4 to the right-hand side of the loop con-
taining Gy, Gy, and A5, Then mowve the summing point between «r; and 5 to the left-hand side
of the first summing point. See Figure 2—22(a). By simplifving each loop. the block diagram can
be modified as shown in Figure 2-—22(b). Further simplification results in Figure 2 22(c). from
which the closed-loop transfer function C(s5) /R(s) is obtained as

C(5) GGGy

R(s) 1 + G, GL I, + GG I, — GG, + G, GG G, Fd, I,

A—-2-4. Obtain transfer functions C(s)/R(s) and C(s)/D(s) of the system shown in Figure 2-23.

Solution. From Figure 2—23 we have LI(s) = GR(s) + G FE(s5) (2—47 )
C(s) — G [I(5) + G L/(s)] (2—a8) FE(x) = R(s) — FHC(s5) (22—

D)
Figure 2—23
Control system with R{s) E(s) Li(s) Cs)
: & [ ] D =N S [ = |

reference input and | L

disturbance input. + I—I
Y=
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Bwv substituting Cquation (2—47) into Cquation (2—48). we get

C(s) — G, (s3) + G Gp[ G R(x) + G.E(5)] (2—50)
Bwv substituting Equation (2—49) into Equation (2—30). we obtain
C(s) = G, D(s) + G G{G, R(s) + G [R(s) — HC(s)]}
Solving this last cauation for «({s). wc got
C(s) + GGG HC(s) = G,D(s) + G1 GG, + G.)R(s)
Hence
G, Ir(s)y + GGG,y + . )R(s)
o = 2—51
(=2 1+~ GG, G H ( )
MNotce that Equation (2—51) gives the responsce C{s5) when both refercnece input /R(s5) and distuar-
bance input D (s) are present.
To find transfer function C{(s)}/ R{s), we let D(s) — O in Eguation (2 51). Then we obtain
C(s) GGG, + G
R(s) 1 + GGG H
Ciryrzlaeslay #n plat anen tearyg e mrrctiosy & ™ SIS <™ wrram le=t T2 0 =7y — A} m T eamatzeary 2 S 1T Tk
Similarly. to obtain transfor function C(s3 /D253, we let R{s) O in Dguation {2513, Then
C{(s)/I(5) can be given by
sy Sp
D(s) 1 + &G, G H
A_2_5, Figure 224 shows a system with two inputs and two outputs. Derive Cy(s5)/R.(5). Ci(5) /R>(5),

Versa. )

Co(s)/Ry(=), and CL(8) /Ra(s). (In deriving outputs for R,(s). assume that Ro(s) is zero, and wvice

Solution. From the figure.
we obtain C; = Gy(R; — G3C,)
Cy = Gy(R, — GL,Cy)

By substituting Equation (2-53) into Equation (2-52), we obtain

) = G1[R1 - G3G4(R2 - GZCI)]

By substituting Equation (2-52) into Equation (2-53), we get
< = G4[R2 — G,Gy(Ry — G:scz)]

Solving Equation (2-54) for C;, we obtain

 GiRy — GGGy R

Tl - GIG,GLGy

Solving Equation (2-55) for C; gives

-GGGy Ry + GaR>

1 — GGGRGy

&

C

R

(2-52) | 8
(2-53) G, ¢
(2-54)  Figure 2-24 G,

~ System with two
(>=55) inputs and two G, |~

outputs.
(2-56) R,
— 04 — C2

(2-57)

Eqguations (2—56) and (2—57) can be combined in the form of the transfer matrix as follows:

<, leNeNer
e 1 — GGG GYy 1 — GG.G.Gy || Ry
L Y _ GGGy <y R
T a e ~ ] Pl e e e
L 1 G GGGy 1 G GGGy |

Then the transfer functions Cy(s) /R (5). Cy(s) AR (5.
as follows:

Cols) /R1(5) and C(5)/Ro(5) can be obtained

Fara Fe 05 e e Sreei

e o i e - 134
Ri(s) 1 — Gi1GaGsGy’ Ry(s)y 1 — GGG Gy
Ca(s) . GGGy Ca(s) <y

R(s) 1 — GGLGsGy T R (=) 1 — GGG Gy,

Note that Equations (2—-56) and (2—57) give responses

R, and R are present.
Notice that when Ry(s)
Figures 2—25(a) and (b). Similarly. when R;(s) = 0,

and C3, respectively. when both inputs

0, thoe original block diagram can bce simplificd to thosc shown in

the original block diagram can be simplified

to those shown in Figures 2-—25(c) and (d). From these simplified block diagrams we can also ob-
tain Cy(s)/Ri(5). Co(s5) /Ri(s). Ci(5) /Rzo(5). and C>(5) /R>(5). as shown to the right of each corre-

sponding block diagram.

Rr R
£ e [a] < —
(a) (= el (b)

Ry T 1—-G GGy Gy
L{(;} |—<—| G’4|—<—|—Gz|—<-

Figure 225 Simplified block diagrams and corresponding closed-loop transfer functions.

R> Cy
N e W W
) T S GiGiGa
7 1— G, Gy Gs Gy

(o]
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i — 2 . Show that for the differential eguation swvstern
N By W A s W A s v — Po rr + P id +— Pore — Pare
state and outrput equations can be given. respecti‘fel}-‘_ o

= (] 1 a4 . "=
o _ (8] (8] e SRS | » = [1 (e ] O] . —+ Pore
A — ks — x> — ey e

where state variables are defined by — Bore
o = ¥ — Botr — [Bare = X4 — [« K — y — Boid — Chrr — Sots — x> — Soie
and Bo = Do B = by — a.Bo B = b — a8, — a>So B = by — a2 — a2, — as[Bo
From the definition of state variables x, and x5, we have .
X, — xo + Bt (2—61) Ho — xm + SBoze (2—62)
To derive the equ'itlorl for x5. we first note from Equation (2—58) that
— —a, ¥V — a->¥v — azv + b + Piii + bsie + s
Since X = ¥V — PBpii — B — Lo we hawve Ky = N — By — B, id — Borx
s — (—a1y¥ — a3y — a3y} —+ By + Dyid + PBori +— Bxre — Boir — BhiéE — Boix
Ka — —a (¥ — Boii — Ladr — Pore) — ayBpii — a0 — a, Pt —ax(¥ — Borr — Bree) — axfPore
— a3 e — a3(y — ,Bl—,u) — @z Bore + byt + biii + Pboie + PBayre — LB — [B,i — [SBoix
Xz = —a, x5 — axx> — azx, —+ (bo - 480):"-‘. —+ (bl — B — alBO)"’i
(b2 — Bo — a1 — axBolr + (bs — a,.B> — axf3, — asBolee
X3 = —a,x3 — a>x> — aszx; + (ba — a1 B> — a5, — a3,80)u = —d;x3 — d>x> — dzxy + [Baie
Hence., we get Xy = —dzx, — d>X> — ;x5 + Biu (2—63)

Combining Equations (2—61). (2—62). and (2—63) into a vector-malrix equation. we obtain Equa-
tion (2—59). Also. from the definition of state variable x;, we get the output equation given by
Equation (2—60).

|A—2—7- Obrtain a state-space equation and output equation for the system defined b}-’l
¥Y(s) @ 257 + 57 + 5 + 2
E(s) 57 4+ a4s® 4+ Ss + 2
Solution. From the given transfer function. the differential eguation for the system is
o4 AV - Sy - 2y = 2 + id +— e + 2
Comparing this equation with the standard equation given by Equation (2—33 ). rewritten
N+ @V o+ as v + as v = b + byid + bare + bsie
we find ay, — 4, as, — 5. an = 2 by — 2, By = 1. by — 1. by = 2
Referring to Equation (2—35). we have B, = by, = 2 s, = b, — a,B8, = —7
B — by — a3, — a>B8q — 19 Bax = by — a8 — a5, — ax3fBo = —4a3
Referring to Equation (2—34). we define
ac, — v — Bate — » — 2« s = X4, — [Blre =— X4, + Tie K = K — P = X, — 19
Then referring to Equation (2—36). Xy, — xo — Tie Ko = x3 + 19
Ky =— — @z X — Ao Xo — Xz + PBore — —2x; — Sxo5 — dxa — A3k«

Hence., the state-space representation of the system is

a4 (8] 1 O 204 x4
X = (8] O 1 X » = [1 (8] O] o —+ e
X —2 —5 — X X3

This is one possible state-space representation of the system. There are many (infinitely manw)
others. If we use MATIL AB. it produces the following state-space representation:

Xy | —4 —5 —2 2, 1 a0,
X = 1 (0] (o] o -+ (o F7} v =[—7 —9 —2] X + 2
Sos (8] 1 O s (8] a0

See MATLAB Program 2-4. (Wote that all state-space representations for the same system are
equivalent.)

MATLAB Program 2—4 4 _s > 1 — — > P >
Nnum = [2 1 1 2]1; 1 O O B = O

den =11 4 5 2]; A= O 1 (@] D= 2
[A,B,C, D] = ¢ Z2ss(num_ den)

|z&—2—8- Obtain a state-space model of the system shown in Figure 2—26. |

Solution. The system involves one integrator and two delaved integrators. The output of each
integrator or delaved integrator can be a state variable. Let us define the output of the plant as
x,, the output of the controller as x>, and the output of the sensor as x;. Then we obtain

X.(s) 10 Xo(s) 1 Xs(s) 1 Y(s) = X,(s)
X,(s) s + 5 U(s) — Xs(s) s X, (5) s + 1
LISy 1 10 Plant YOS
S 5 4+ 5
Figure 2—26 Controller
Control systerm. 1 Sensor
s + 1
which can be rewritten as sX;(5) = —5X,(s5) + 10X5(s)
sX5(s5) = —X3(5) + U(s) SXL(5) = X (5) — Xa(s) Y(s) = X,(s)
Byv taking the inverse Laplace transforms of the preceding four equations. we obtain
Xy = —5x; + 10x, Xy = —x3 + u X3 = x; — X3 S |
Thus, a state-space model of the system in the standard form is given by
X, —5 10 O x4 0] X
Ko = 0] o —a X5 + 1 |zt y=[1 0 0] X5
g d | o —1 X 0] X3

It is important to note that this is not the only state-space representation of the system. Infinite-
v many other state-space representations are possible. However, the number of state variables is
the same in any state-space representation of the same system. In the present system. the num-
ber of state variables is three, regardless of what variables are chosen as state variables.

Control Theory-Part2 all Page 18 /52 Dr. Mohsen Soliman, ACC Manager



|A—2—9.
Solution.

Obtain a state-space model for the system shown in Figure 2—27('—‘1).'

First. notice that (as + b)) /s involves a derivative term. Such a derivative term may be
avoided if we modify (as + b)) /s as as + b (a L 2) 1
52

Using this modification. the block diagram of Figure 2—27(a) can be modified to that shown in
Figure 2—27(b).

Define the outputs of the integrators as state variables. as shown in Figure 2—27(b). Then from
Figure 2—27(b) we obtain

A (s) . L Xo(s) 2 Y(s5) = X,(s5) which mawyv be modified to
X5(s)+ alU(s) — X,(s)] 5 U(s) — X.(s) 5
SX(5) = Xo(s) + alU(s) — X,(s5)] SXL(5) = —bX,(s5) + bU(s) Y(s) — X, (s)
Li(s) ¥(s)
—— as + b it % o (b)
oy
(a) ]
1‘ Li(s) - Az(s5) 1 X(s)  Yis)
—+ = —— —
Figure 2—27 (a) Control system: = = I
(b)) modiftied block diagram.
Taking the imnverse Laplace transforms of the preceding three equations. we obtain
A —ax, + x5 + e o —bx, + bt v = x,

Rewriting the state and output equations in the standard vector-maitrix form. we obtain
X —x 1 a4 o a0
= —+ e 1 O
IA—2—10. Obtain a state-space representation of the system shown in Figure 2—28(a).|

Solution. In this problem. first expand (s + z)/(s + p) into partial fractions.
s+z L Z— P
s + p s + p
Next.convert K /[s(s + a)]into the product of K /s and 1 /(s + a). Then redraw the block diagram

-(.' L= -
as shown in Figure 2—28(b). Defining a set of state variables, as shown in Figure 2-—28(b). we ob-
tain the following equations:

X4 —dx, + X5
X, = —Kx; + Kx; + K x5 = (2 — p)x, — px5; + (z — plu Yy = x
_'_u Sy < L K Y 173 X X0 a0 »
3 &+ P S(s5 + a) g Z+P _-E’_ i 2 1 1 3
a — &5 r 5 5 + «a
4 LN}

Figure 228 (a) Control system: (b)) block diagram defining state wvariables for the svstem

Rewriting

1 e e 1 o xq o x|
gives o (s} ~K B -+ K i » = [1 O 0] Ko
X3 *(z — p) o —p X3 z — P

x5 _ |
Notice that the output of the integrator and the outputs of the first-order delaved integrators
[1/(s + @) and (z — p)/(s + p)]| are chosen as state variables. It is important to remember that

the output of the block (5 + z) /(s + p) in Figure 2-—28(a) cannot be a state variable. because this
block involves a derivative term. s + z=Z.

[AE=—=—x1-

Obtain the transfer function of the systemm defined bv

BRI

Solution. Referring to Equation (2—29). the transfer function « (s )

< (s (s )T+
In this problem. matrices . B C. and M are

—1 1 O o
o~ s} —1 1 . = — o . «
s} —= 1

is given by

[1 o o]. Vo3 o
L8]
Hence s + 1 1 —1
G(s) — [1 O 0] o s+ 1
O O s + 2 1 1 1
s + 1 (s +— 1) (s + 1)(s + 2) o
1 1
(1 o O] o s + 1 (s + 1)(s + 2) (;l)
(s + 1)3(s + 2) 5% + 452 + S5 + 2 =

| A—2—-12. L inearize the nonlinear equation z

= x- + 4dxy + 6y~ |
in the region defined by 8 = x = 10.2 = y = 4.

Solution. Define Ff(x, ) = = x? + dxy + 67

S ar —
Then z = f(x.¥y) = f(x.¥) + [ —x)—|——(y_y)] 4+ -
where we choose x = 9. ¥ 3. ey

Since the higher-order terms in the expanded equation are small

. neglecting these higher-
order terms. we obtain z — 2z = Ki(x — x) + Kx(yv — ¥)

ajf
where K, = — = 2x + 4y = 2 X 9 4+ 4 = 3 = 30
X | x=% v=+
, y—3
KZ—(,"; — 4% + 129 — 4 < 9 + 12 %< 3 — 72
c X=X, ¥y=¥
T Z = X2 + 4%y + 692 = 92 + 4 X 9 X 3 + 6 X 9 = 243
Thus z 243 30(x — 9) + T2(yv — 3)

Hence a linear approximation of the given nonlinear equation near the operating point is

z — 30x — 72y + 243 = 0
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Mathematical Modeling

of Mechanical Systems
and Electrical Systems

3—1 (INTRODJUJCTION

This chapter presents mathematical modeling of mechanical systems and electrical
systems. In Chapter 2 we obtained mathematical models of a simple electrical circuit
and a simple mechanical system. In this chapter we consider mathematical modeling
of a variety of mechanical systems and electrical systems that mayv appear in control
systems.

The fundamental law govering mechanical systems is WNewton’s second law. In
Section 3—2 we apply this law to various mechanical systems and derive transfer-
function models and state-space models.

The basic laws governing electrical circuits are Kirchhoff's laws. In Section 3—3 we
obtain transfer-function models and state-space models of various electrical circuits
and operational amplifier systems that may appear in many control svstems.

32 MATHEMATICAL MODELING OF MECHANICAL SYSTEMS
This section first discusses simple spring systems and simple damper systems. Then

we derive transfer-function models and state-space models of various mechanical
systems.

Figure 3—1 Z Ky x
(o) System consisting Z

of two springs in parallel: = P ra
(b)) system consisting Z v,

of two springs in series. = (a)

EXAMPLE 3_1]
ILet us obtain the equivalent spring constants for the systems shown in Figures 3—1(a) and (b).
respectively.

For the springs in parallel [Figure 3—1(a)] the equivalent spring constant k.4 is obtained

from Eix + kxax — F — Kggqx or Keg = kg + k>
For the springs in series [Figure—3—-1(b)]. the force in each spring is the same. Thus
kay = F, Fx(x ») F =
Elimination of y from these two equations results in kz(x — ) = F
Ko Foq + Koo !
or Kox = F —+ ryF = ——— F
1 L=t S ko 1/ 1 - 1
equivalent spring constant k.4 for this case is then found as Keq ~ Ty e - F o K

IEXAMPLE 32 |

Let us obtain the equivalent viscous-friction coefficient b 4 for each of the damper systems shown
in Figures 3—2(a) and (b). An oil-filled damper is often called a dashpot. A dashpot is a dewvice that
provides viscous [riction. or damping. It consists of a piston and oil-filled cvlinder. Anv relative mo-
tion between the piston rod and the cylinder is resisted by the oil because the oil must flow around
the piston (or through orifices provided in the piston) from one side of the piston to the other. The
dashpot essentially absorbs energv. This absorbed energy is dissipated as heat. and the dashpot does
not store any kinetic or potential energy.

Figure 3—2 i
(a) Two dampers @ (®) by by
connected in parallel: boy
(b) two dampers T
connected in series. x Vv x =z y
(a) The force JF due to the dampers is
F — B (» — %) + bo(¥y — x) — (b1 + B2)(¥ — Xx)
In terms of the equivalent viscous-Ifriction coefficient H_,. force F is given by
I = Bog(y — x) Hence bB.gq = b,y + by
(b)) The force Ff due to the dampers is F =5z — x) = b (» — £) (3—1)

where z is the displacement of a point between damper £, and damper H,. (NWote that the
same force is transmitted through the shaft.) From Equation (3—1). we have

(B, + Bo)z — by + Py x or F - ﬁ(bzy 4 By x) 3-2)
In terms of the equivalent viscous-Iriction coellicient b.5. force f is given by

== beq(j’ — j:)
Bw substituting Equation (3—2) into Equation (3—1). we hawve

= By — =) ——b[* &£ (b'+b;‘c)]:7b‘bz (¥ — =x)
2L = 2] ¥ B By 2 1 By + by Y
By b P2 ) 1 1
= G = el = e —D o Cssy wa BD Hence. H = == =1/ + —
Thus., r Bog( ¥ x)) b, = Cw» x) ea 5y + by F> 2

IEXAMPLE 3-3]|
Consider the spring-mass-dashpot system mounted on a massless cart as shown in Figure 3—3. Let
us obtain mathematical models of this system by assuming that the cart is standing still forz << O and
the spring-mass-dashpot system on the cart is also standing still for r =< O. In this system. «(7) is the
displacement of the cart and is the input to the system. Atz = 0, the cart is moved at a constant speed.,
or it = constant. The displacement yv(r) of the mass is the output. (The displacement is relative to
the ground.) In this system. r712 denotes the mass. b denotes the viscous-Iriction coefficient. and k de-
notes the spring constant. We assume that the friction force of the dashpot is proportional to y —
and that the spring is a linear spring: that is. the spring force is proportional to y — .

For translational systems, Newton’s second law states that

nma = 2 I

where 2 is a mass. a is the acceleration of the mass. and = F is the sum of the forces acting on the
mass in the direction of the acceleration a. Applying Newton’s second law to the present system
and noting that the cart is massless. we obtain
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> dy 3 a=y dy dee
mdrf:*"(‘éifff;)*kwf“) or T TP g TRy T Py
This equation represents a mathematical model of the system considered. Taking the Laplace
transform of this last equation. assuming zero initial condition. gives

(7252 + bs + K)Y (s) — (bs + K)YU(s)

Taking the ratio of ¥ (s) to U (s). we find the transfer function of the system to be
Y(s) _ bs + Kk
U(s) ms? + bs + Kk
Such a transfer-function representation of a mathematical model is used very frequently in
control engineering.

—+ Kt

Transfer function = G(s5) =

E—— ——
=
2
Figure 3—3 xﬁsgess ; pa
Spring-mass- T
dashpot system zZ n
mounted on a cart. Z — A
e b
Z (@] (@) —

Next we shall obtain a state-space model of this svstem. We shall first compare the differen-

iz i i H < [2]
tial equation for this system [T . N = o ‘e
e 7 1 7
with the standard form V + a, v + asv = bgii + by + Dbsie
and identifyv a, . a->. Hg. H,. and b, as follows:
b IS 2] I
ay = . adz> = ——. by = 0O, by = —. by — —
FrL FFE Frr FPT
Referring to Equation (3—35). we have B, = b, = 0O » b .
o - - - - - 2
s, = by, — a,B3qg = o B2 — b ay B a-Bo — . (m)
Then. referring to Equation (2—34). define b
X = ¥ — Lo — ¥ xXs — X4y — Bt = x, — — U
Frr
. - 5 [2
From Equation (2—36) we have Ky — x> + B — x> + T
. I [2] < B N
Xo = —dox, — (d1X>2 + Gort = — — x] — —— X2 —+ _— — — i
2 2 e e
and the output equation becomes M =

H
- (8] 1 e
A q . a0y FrL o - _ o xq S
or I:jf'z ||: ) 5 ||:x2 |+ ~ (b>2 s (3—3) and [1 :ll:xz | C )
FrL FrR - -
Frr Frr

Equations (3—3) and (3—4) give a state-space representation of the system. (WNote that this is not
the only state-space representation. There are infinitely many state-space representations for the

svstem.)

u —— X — 1>
p
L .
Figure 3_—4 AW my AW s M
Mechanical system. K _?_ ks
QO Q) 7

[EXAMPLE 3—-4]

Obtain the transfer functions X, (s)/U (s) and X5(s5)/U (s) of the mechanical system shown in
Figure 3—4. The equations of motion for the system shown in Figure 3—4 are

iy x, = —k;x; — kz(xl == xz) = b(il == J'rz) + X = —Kyxs — kz(xz = xl) S b(iz = J'cl)

Simplifving. we obtain

X%, + bi, + (ky + K)xy = by + koxy + u Xy + biy + (ko + Kka)xs = bXy + kaxy

Taking the Laplace transforms of these two equations, assuming zero initial conditions. we obtain
[r72,82 + bs + (kg + k3) ]| X4 () = (bs + k) X5(s) + U(s) 3-5)
[7225% + bs + (ka + k3) | Xo(s5) = (bs + k) X1(s) 3—6)

Solving Equation (3—6) for X,(s) and substituting it into Equation (3—5) and simplifving. we get
[(p2:52 + bs + ky + ka)(mi252 + bs + kytks)—(bs + k) | X (5) = (m252 + bs + ks + k:3)U(s)

from which we obtain
Xi(s) 57 + bs + ko + ki

= (3
U(s) (772,82 + bs + ky + k#2252 + bs + k, + ki) — (bs + k,)°
From Equations (3—6) and (3—7) we have
Xo(s) _ bs + k; -
U(s) (772,52 + bs + kg + kx)(#m35% + bs + ks + k3) — (bs + ks) B

Equations (3—7) and (3—8) are the transfer functions X, (s) /U (5) and X>(5)/U(s). respectively.
[EXAMPLE 3-5]

An inverted pendulum mounted on a motor-driven cart is shown in Figure 3—5(a). This is a model
of the attitude control of a space booster on takeoff. (The objective of the attitude control prob-
lem is to keep the space booster in a vertical position.) The inverted pendulum is unstable in that
it may fall over any time in any direction unless a suitable control force is applied. Here we consider

only a two-dimensional problem in which the pendulum moves only in the plane of the page. The
control force i is applied to the cart. Asssume that the center of gravity of the pendulum rod is at
its geomeltric center. Obtain a mathematical model for the system.

Define the angle of the rod from the vertical line as 6. Define also the (x. v) coordinates of

the center of gravity of the pendulum rod as (xs. va ). Then X = x + [sin@ Vo — cos o
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Figure 3—5 (a) Inverted pendulurm syslern: (b)) free-body diagram.

To derive the equations of motion for the system. consider the free-body diagram shown in
Figure 3—5(b). The rotational motion of the pendulum rod about its center of gravity can be
described by 16 = VIsin0 — HIcoso (3—9)
where [ is the moment of inertia of the rod about its center of gravity.

The horizontal motion of center of gravity of pendulum rod is given by

2
mo_a (x + {sin®) = H (3—10)
The vertical motion of center of gravity of pendulum rod is
- dr; (Icos8) = V — mg (3-11)
The horizontal motion of cart is described by
d?x -~
A H _ 3-12)
Since we must keep the inverted pendulum vertical. we can assume that () and 6(r) are
small quantities such that sin @ = 0.cos@ = 1.and 662 = 0. Then. Equations (3—9) through (3—11)
can be linearized. The linearized equations are
78 — vie — HI 3-13) m(x + 18) = H (3—-14) 0=V — mg (3—15)
From Equations (3—12) and (3—14). we obtain (M + m)X + mld = u 3—16)
From Equations (3—13). (3—14)., and (3—15). we have
168 = mgle — HI= mglo — I(mx + mld) or (I + ml?)8 + milx = mglo (3—17)

Equations (3—16) and (3—17) describe the motion of the inverted-pendulum-on-the-cart system.
They constitute a mathematical model of the system.

EXAMPLE 3- 6|

Consider the inverted-pendulum system shown in Figure 3—6. Since in this system the mass is con-
centrated at the top of the rod, the center of gravity is the center of the pendulum ball. For this
case. the moment of inertia of the pendulum about its center of gravity is small. and we assume

4 = 0 in Equation (3—17). Then the mathematical model for this system becomes as follows:
(M + m2)x + il = w (3—13) 28— X = rrgle (3—19)
Equations (3—18) and (3—19) can be modified to
MIO = (M + rn)g0@ — wu (3—20) Mx = e — gt (3—21)
= FE N
= e € sin & |~ —
T
A —_—

7
_ —~.
Figure 3—6 € cos rragy /

Inverted-pendulurm

©
SWstocrr.
i
= s -
= £ —— AT
/
=
/
= (@) (@D

Equation (3—20) was obtained by eliminating X from Eqguations (3—18) and (3—19). Equation
(3—21) was obtained by eliminating & from Equations (3—18) and (3—19). From Equation (3—20)
we obtain the plant transfer function to be

A (s5) 1 _ 1
_— 2
L7 (s) NI s (M + m)g MI(S+\K%3)(57 %g
The inverted-pendulum plant has one pole on the negative real axis [s — — (A + s/ M) Ng ] and
another on the positive real axis [s = ( N+ rr2)/ MI) g |. Hence. the plant is open-loop unstable
Define state variables xq, x2., X3, and x4 by
x, = 6 X — & Xz = X x4 = X

Note that angle 6 indicates the rotation of the pendulum rod about point A, and x is the location
of the cart. If we consider € and x as the outputs of the system. then

= n]l-[2]-[2]
b - x Xz
(WNotice that both & and x are easily measurable quantities.) Then., from the definition of the state
variables and Equations (3—20) and (3—21). we obtain 1
Xq = X e :ugx 7iu Xz = x4 i4:*ﬂgxl+7u
2 NTs ! AT DT

In terms of vector-maltrix equations. we have

o 1 0 O o
acq N+ rrz Xy 1 X
. —_ 0o 0 o -
Fa | AL =1 x|, rMio| 5 oo i :I: 1 0o o o:l X (3-23)
o o o o 1 x5 (o) - s o o0 1 (8] x3
Xy o Xy 1 X
AT o o o A

Equations (3—22) and (3—23) give a state-space representation of the inverted-pendulum system.
(INote that state-space representation of the system is not unique. There are infinitely many such
representations for this system.)
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33 (MATHEMATICAL MODELING OF ELECTRICAL SYSTEMS]
B asic laws governing celectrical circuits are Kirchhoff’s current law and wvoltage law.
Kirchhoff's current law (node law) states that the algebraic sum of all currents entering and
leaving a node is zero. (This law can also be stated as follows: The sum of currents enter-
ing a node is equal to the sum of currents leaving the same node.) Kirchhotf's voltage law
(loop law) states that at any given instant the algebraic sum of the voltages around any loop
in an electrical circuit is zero. (T'his law can also be stated as follows: The sum of the volt-
age drops is egqual to the sum of the voltage rises around a loop.) A mathematical model
of an electrical circuit can be obtained by applving one or both of Kirchhoff's laws to it.

This section first deals with simple electrical circuits and then treats mathematical
modeling of operational amplifier systems.

[LRC Circuit.] <Consider the electrical circuit shown in Figure 3—7. The circuit con-
sists of an inductance . (henrwv). a resistance R (ohm). and a capacitance C (farad).
AApplving Kirchhoff's voltage law to the syvstem. we obtain the following egquations:

i . 1 . 1 . _
R /1 dr — e, (3-_24) = /1 dr — e, (3—25)

L R Ry R

Figure 3—7 _7\ Figure 3—8 . \ - \ -
Electrical circuit. ¢¢ ' < “o Electrical system. ! /I I /l B
| e el

O » O (&,

Equations (3—2<4) and (3—25) give a mathematical model of the circuit.
2 transfer-function model of the circuit can also be obtained as follows: Taking the
L. aplace transforms of Equations (’% 24) and (3—25). assuming zero initial conditions.

we obtain s  RI 4 L 7 — = 1 1
SZICs) (s) + &= 1(s) = E.(s) o s 1 = E.(s)
If &;1is assumed to be the input and e, the output. then the transfer function of this svstem
is found to be Eo(s - 1
= = (3—206)
E(s) I s + RCs + 1

M state-space model of the syvstem shown in Figure 3—7 mayv be obtained as follows: First.
note that the differential equation for the S}’Stleln can belobtainecl from Equation (3—26) as

Co T LS T Lo T L <
Then by defining state variables by X — 5 Ko — €
and the input and output variables by == e, — x4

I e T e

These two equations give a mathematical model of the systerm in state space.
Transfer Functions of Cascaded Elements. Manywy feedback systems have com-

pronents thhat load each other. Consider the system shown in Figure 3—8. A ssume that e;

is the input and e, is the output. The capacitances «; and 5 are not charged initially.

It will be shown that the second stage of the circuit (/R C5 portion ) produces a loading
ceffect on the fTirst stage (/X C; portion ). lhe equations for this system are

— ix)dr + R.i, = e (3—27)
1 3 A . 1 . 1 ; _
and . f(lz — i) dr + Roix + P fzz dr — O (3—28) — ‘/12 dr = e, (3—29)
Taking the L.aplace transforms of Equations (3—27) through (3—29). respectively. using
zero initial conditions., we obtain 1 [Il(s) o IZ(S)] b R I, (s) — E,(s) (3—30)
é[fz(s) — L (s)] + RoI-(s) + %2512(5) = O (3—31) %2512(5) — E_(s) (332>

Eliminating 7/, (s) from Equations (3—30) and (3—31) and writing F,;(s) in terms of /5(s).
we find the transfer function between F,(s5) and ,(s) to be
F,(5) _ 1

F(s) (R, Cys + 1N R.Cos + 1) + R, CLs B

Ry Cy R, C52 + (R C, + R,C; + R,C3)s + 1
The termm &R, CLs in the denominator of the transfer function represents the interaction
of two simple RC circuits. Since (Rlcl —+ R, C, + R, C2)2 = 4R, C,R,.C,. the two roots
of the denominator of Equation (3—33) are real.

The present analvsis shows that. if two RC circuits are connected in cascade so
that the output from the first circuit is the input to the second., the overall transfer
function is mot the product of 1/(R1C1.5' —+ 1) and 1/(R2C2.5' —+ 1)-- The reason for this
is thhat. when we derive the transfer function for an isolated circuit. we implicitly as-
sume that the outrput is unloaded. In other words. the load impedance is assumed to
be infinite, which means that no power is being withdrawn at the output. When the sec-
ond circuit is connected to the output of the first,. however., a certain amount of power
is withdrawn. and thus the assumption of no loading is violated. Therefore. if the trans-
fer function of this syvstem is obtained under the assumption of no loading. then it is
not valid. The degree of the loading effect determines the amount of modification of

the transfer function.

(3—33)

Complex Impedances.] In deriving transfer functions for electrical circuits. we
frequently find it convenient to write the Laplace-transformed equations directly.
without writing the differential eguations. Consider the system shown in Figure 3—9(a).
In this system. 2, and ~“, represent complex impedances. The complex impedance
Z(s5) of a two-terminal circuit is the ratio of E(s5). the Laplace transform of the
voltage across the terminals. to F(s). the Laplace transform of the current through
the element. under the assumption that the initial conditions are zero. so that
Z(s) = E(s)/F(s). If the two-terminal element is a resistance R, capacitance C, or
inductance .. then the complex impedance is given by R. 1 /Cs. or I.s. respectively. If
complex impedances are connected in series. the total impedance is the sum of the
individual complex impedances.

Remember that the impedance approach is wvalid onlwy if the initial conditions
involved are all zeros. Since the transfer function requires zero initial conditions. the
impedance approach can be applied to obtain the transfer function of the electrical
circuit. This approach greatly simplifies the derivation of transfer functions of elec-

trical circuits.
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Consider the circuit shown in Figure 3—9(b). Assume that the voltages e; and e, are
the input and output of the circuit, respectively. Then the transfer function of this

circuit is =, (s) ZS(5)
;. (s5) Za(s) + Z5(s5) 3
For the svstem shown in Figure 3—7, Z, = s + R, s = Par
Hence the transfer function Z,(s) /F;(5) can be found as follows:
1
which is, of course. identical Eo(s) Cs _ 1
to Equation (3—26). . (s) Fos 2 4 Cls IL.Cs? + RCs + 1
(a) (b)
i i i o— 4 —I'_O
: Z, = Z -
Figure 3—9 €; Zs €o
Electrical circuits. —~ €] - s
o 1 o
e -

Consider again the system shown in Figure 3—8. Obtain the transfer function ~,(s5)/FE;(5) by use
of the complex impedance approach. (Capacitors ;) and 5 are not charged initially.)

The circuit shown in Figure 3—8 can be redrawn as that shown in Figure 3—10(a). which can be
further modified to Figure 3—10(b).

In the svstem shown in Figure 3—10(b) the current [ is divided into two currents /; and /5.

Noting that Zody = (Zz + Z)1s, IH + I, = 1

) g B oo oy . o z,

we obtain L= mh o g 2" o B e
Noting that E(s) o X i T [Z 4 A& + Za) F s
T & = — —
= e = X e Py
i 3

) — By~ =  mwe-aEtain., el . Z2Za

= = = E(s) Z(Z + Z5 + Z3) + Z(Zy + Z,)
Substituting i 1 - 2 = 1.5 ) 5 = >, A1l e -5 ) mmto this last equation., we get
Substi ing =~ ”,., 7 1 /(C =z R d =Z 1/(C i his 1 q i ©

1 1

E.(s) 5 CL5 1

E;(s)

1 1 1 i 1\ R CLRCo5% + (R Cy + RyCoy + R Co)s+ 1
= +—) + —+ 2
R1(Cls+R2 Czs) <, s (Rz Czs)

which is the same as that given by Equation (3—33).

Figure 3flﬂ ) (22 L z ——x > (b)
(a) The circuit of 7 =

Figure 3—8 shown in E(=) F ! I 3 I
terms of impedances: £:(s) E,(s) Z ©
(b) equivalent circuit Eo(s)
diagram. < o o o

| Transfer Functions of Nonloading Cascaded Elements.| The transfer function
of a system consisting of two nonloading cascaded elements can be obtained by elimi-
nating the intermediate input and output. For example. consider the system shown in

Figure 3—11(a). The transfer functions of the elements are
o= _ Xa(s) - s _ Xs(s)

I(S) - X](S) an Z(S) - Xz(S)
If the input impedance of the second element is infinite, the output of the first element is
not affected by connecting it to the second element. Then the transfer function of the whole
system becomes - X5(5) Xo(s5)X5(s) - =

SR T M
The transfer function of the whole system is thus the product of the transfer functions
of the individual elements. This is shown in Figure 3—11(b).

As an example. consider the system shown in Figure 3—12_.The insertion of an isolating
amplifier between the circuits to obtain nonloading characteristics is frequently used in
combining circuits. Since amplifiers have very high input impedances, an isolation
amplifier inserted between the two circuits justifies the nonloading assumption.

The two simple RC circuits. isolated by an amplifier as shown in Figure 3—12, have
negligible loading effects, and the transfer function of the entire circuit equals the prod-

uct of the individual transfer functions. Thus, in this case,

Fila) ( 1 )(K)( 1 ): K
() R, C,s + 1 R.Co-s + 1 (R1Cys + 1) R>Ces + 1)

X408 Xo(s) X3(s) Xy(s) X3(s)

—— G (5 f— G5 G(5) Gols)  |——
(a) (b)
Figure 3—11 (a) System consisting of two nonloading
cascaded elements: (b) an equivalent system.
|Electronic Controllers._| In what follows we shall discuss electronic controllers using

operational amplifiers. We begin by deriving the transfer functions of simple operational-
amplifier circuits. Then we derive the transfer functions of some of the operational-amplifier
controllers. Finally, we give operational-amplifier controllers and their transfer functions in
the form of a table.

R| R2

€]

Figure 3—12 Isolating i -,
.. c | g . Figure 3—-13 ea

Electrical 1 amplifier C> -
system. i | (gain K) | 7 Operational €
: amplifier. oO—1r—©°
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[Operational Aamplifiers.| Operational amplifiers., often called op amps. are
freqguently used to amplity signals in sensor circuits. Op amps are also frequently used
in filters used for compensation purposes. Figure 3—13 shows an op amp. It is a common
Praclice to choose the ground as O volt and measure the input voltages €7 and e relative
to the ground. The input e; to the minus tecrminal of the amplificr is inverted., and thcoc
input e, to the plus terminal is not inverted. The total input to the amplifier thus becomes
e, — e,. Hence. for the circuit shown in Figure 3—13. we have

e, — K(esx — 1) — —K(e, — e2)

where the inputs e; and e, may be dcec or ac signals and K is the differential gain (volt-
age gsain). The magnitude of K is approximately 105 — 10° for dc signals and ac signals
with freguencies less than approximately 10 H7z. (1 he differential gsain K decreases with
the signal freguency and becomes aboutr unity for freguencies of 1 WIHZ= — 50 IWIEI=.)
Note that the op amp amplifies thhe difference in voltages €4 and e>. Such an amplifier is
commonly called a differential amplifier. Since the gain of the op amp is very high. it is
necessary to have a negative feedback from the output to the input to make the ampli-
fier stable. ( The feedback is made from the ourput to the inverted input so that the feed-
back is aa negative feedback.)

In the ideal op amp. no current flows into the input terminals, and the output volt-
age is nmnot affected by the load connected to the output terminal. In other words. the
input impedance is infinity and the output IiMmpedance is zero. In an actual op amp. a
wvery simmall (almost negligible) current flows into an input terminal and the output can-
not be loaded too mmuch. In our analysis here. we make the assumption that the op amps
are ideal.

[Inverting Amplifier.] <Consider the operational-amplifier circuit shown in Figure 3—1<.
I et us obtain the output voltage e, .
The eguation for this circuit can be obtained as follows: Define

R e; e N e’ — e,
i = = iy — ——
- - - .1 - - = -
Since only a negligible current flows into the amplifier. the current #; mmust be egual to
current i-. Thus e; — e @ e — e,
Vot R

Since K (0O — e’) = ep and K = 1. " must be almost zero. or e’ O. Hence we have

e; —es R

= 2 or e, = — e,

=y oo < mr, °

Thus the circuit shown is an inverting amplifier. If /R, — R-,. then the op-amp circuit

shown acts as a sign inverter.

Figure 3—15
(aa) WNoninverting
operational amplifier:

R |
E o
L=
(bleguivalent circuit. i £ % =, ‘
—_—
4 =

—_— Cauy (b

EXAMPLE 38

Figure 3—16 shows an electrical circuit involving an operational amplifier. Obtain the output e,,.

Let us define A e; — e’ B P d(e’” — e,) ) e — e,
Efq —=— = i> = — == iy — ————— <
1 3 N = dr = Fi e
Noting that the current flowing into the amplifier is negligible. we have £y = Ex + En
. 4 d{e’” — e e R s G
Hence <4 el ( 0) —+ < o Since e = 0, we have e . — deo -}
R, e R =y dr oo
Taking the Laplace transform of this last equation. assuming the zero initial condition. we have
=.(s = . . F S5 e
# S— AEs s M ,(5) which can be written as # = R e
a3 R = E(s) R, R.Cs + 1

The op-amp circuit shown in Figure 3—16 is a first-order lag circuit. (Several other circuits involving
op amps are shown in Table 3—1 together with their transfer functions. Table 3—1 is given on
page 85.)

F(=s)
Figure 3—16 Figure 3—17 r Z20=) [
First-order lag circuit . - _ F(s)
using operational o> o Ope:‘_‘(‘il:_t‘lonal Zls) —
it amplifier (s )
ampitirer. € circuit
é; - E.(s) l_ —+ (5D
<L—: _— O
| Impedance Approach to Obtaining Transfer Functions.|] <Consider the op-amp

circuit shown in Figure 3—17. Similar to the case of electrical circuits we discussed ear-

lier. the impedance approach can be applied to op-amp circuits to obtain their transfer

functions. For the circuit shown in Figure 3—17. we have

Fi(s) — E'(s) _ E(s) — EL(s) Since E'(s) = 0. we have Lols) = _ Z2(s) (3—34)

= Z F;(s) Za(s)

XAMPLE 3—-9

Referring to the op-amp circuit shown in Figure 3—16, obtain the transfer function E_,(s) /FE;(s) by

use of the impedance approach. The complex impedances 2, (s5) and Z,(s) for this circuit are

R~
! _ “Z1(s) = R, and Z) = oo 1T T moes a1
The transfer function E_,(s5)/E;(s) is. therefore, obtained as s
E,(s) Za(s) R 1
E(s) Zi(s) R, R-Cs + 1
R,C,
where Tr = R1C1, ¥ = chz, KC — W
. L RLC, RG> RaRa RO, s
Notice that K oo = R.C. R, <, R.R." o = ﬁ
This network has a dc gain of K_«a =— R2R4/(R1 R3)~

Note that this network. whose transfer function is given by Equation (3—36). is a lead
network if R, C, = R, C,., or e« =< 1. It is a lag network if R, C, — R,C,.

) o (b> 1 1L< L2
| Z> I I Ry
o i Rs
o o E;(s) -
e L L o - ()] Eag)
E(s) - -
o — < Lead or lag network Sign inverter
Figure 3—18 (a) Opecrational-amplifier circuit: (b) operational-amplifier used as a lead or lag compensator
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(PID Controller Using Operational Amplifiers] TFigure 3-19 shows an electronic
proportional-plus-integral-plus-derivative controller (a PID controller) using opera-

tional amplifiers. The transfer function E(s)/FE;(s) is given by E(s) = Z
where Z, = #_ Z, — RpCos + 1 E,(s) Z5
R] C1.5‘ —+ 1 CzS E (S) R
Thus E(s) _ (( RCes + 1) R, Cys + 1) Noting that 2 = -2
E,(s) C.s R, E(s) R

Figure 3—19
Electronic PIID
controller.

Fo(s)

we have
Eo(s) E,(s5)E(s) 7R4R2(R1C15+1)(R2C2.5‘+1)7R4R2I/R, C1+R2C2+ 1

+R,C15)

FSNES) E(s) E,(s) R3R, R,Cos Rz R\ R, C> R>Css
RyR,C, + R,C3) . 1 L RC R-C> 5] (337
R R, C (R-l ; —+ R2C2)5 rR,C, + RC-5 -7

MNotice that the second operational-amplifier circuit acts as a sign inverter as well as a

gain adjuster. When a PIID controller is expressed as £,(s5 T

= J P Lol (1 T 1y
E:(s) K3

K, is called the proportional gain. 7; is called the integral time. and 7, is called the

derivative time. From Equation (3—37) we obtain the proportional gain &K
T;. and derivative time ¥, to be

p- integral time

1
R (R, C, + R,C,) o Ry Cy RC r p—
Kp = R.R,C- Ta = R, — R ‘ R, C, + R,C,
When a PIID controller is expressed as Eo(s) = K, + < 4 K,s
E.(s) 5

K, is called the proportional gain. K; is called the integral gain. and K, is called the

derivative gain. For this controller
RUAR,C, + R2CS) " o— R,

Kp : Rz R, C> ‘ R R, C5 Ky =

RiR-C,

s
Table 3—1 shows a list of operational-amplifier circuits that mawv be used as con-
trollers or compensators.

Table 3—1Opcrational-Amplifier Circuits That May Be Used as Compensators]

Control E_(5) O - e
. — a7} t 1-A 1it C t
Action Gis) = E.(5) perationa mplifier Ircults
Rs R>
! P Ry Ry
> Ry |
- R3 R|C2.5‘
R, R>

R4 & RzCzS + 1
4 PI R} Rl RngS
.Rg 1 RzCzS
fead R4 R R C 1
a4 Mz 1S +

6 or Ry R; RaCos + 1

lags

Lag—
7| 25, 1Rs Ra (R + R3) Cis + 1] (RyCas + 1)

Rs Ry (R1Cis+ 1) (R + R4q) Cos + 1]
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( EXAMPLE PROBLEMS AND SOLUTIONS ]

Figure 3—20(a) shows a schematic diagram of an automobile suspension system. As the car moves
along the road. the vertical displacements at the tires act as the motion excitation to the auto-
mobile suspension system. The motion of this system consists of a translational motion of the cen-
ter of mass and a rotational motion about the center of mass. Mathematical modeling of the
complete system is quite complicated.

A very simplified version of the suspension system is shown in Figure 3—20(b). Assuming that
the motion x; at point P is the input to the system and the vertical motion x, of the body is the
output., obtain the transfer function X _,(5)/X;(s). (Consider the motion of the body only in the ver-
tical direction.) Displacement x, is measured [rom the equilibrium position in the absence of
input x;.

The equation of motion for the system shown in Figure 3—20(b) is

mix, + b(x, — x;) + k(x, — x;) = 0 or mx, + bx, + kx, = bx; + kx;
Taking the Laplace transform of this last equation. assuming zero initial conditions., we obtain
2 + bs + k)X, = (bs + k)X,
(rras s )X.(s) = (bs ) X (5) e

Hence the transfer function X ,(s5)/X;(5) is given by

X, (s) ms? + bs + k
e v

Figure 3—20
(a) Auvtomobile

suspension system: 2 @ R——) l

(b) simplified k b x,,
Center of mass

Xy

suspension system.

\- Auto body
= [ = [ g }
L y
Obtain the transfer function Y (s)/U(s) of the system shown in Figure 3-21. The input « is a My T
displacement input. (Like the system of Problem A-3—1. this is also a simplified version of an
automobile or motorcycle suspension system.)
Solution.] Assume that displacements x and y are measured from respective steady-state| f, b
positions in the absence of input u. Applying Newton’s second law to this system, we obtain
m¥ = ky(y — x) + b(y — %) + ky(u — x) m,y = —ky(y — x) — b(y — X) N
Hence, we have m ¥ + bx + (k; + ky)x = by + kry + kyu m,y + by + k,y=bx + k;x m T

Taking Laplace transforms of these two equations, assuming zero initial conditions, we obtain
[mys® — bs + (ki + k2)] X (s) = (bs + k)Y (s) + kU(s) [m,52 + bs + k)Y (s) = (bs + k) X(s) | ¥ Ki
Eliminating X (s) from the last two equations, we have

m,s® + bs + k o
(mis® + bs + kg + k») 2 bs + X, = Y(s) = (bs + k)Y (s) + kyU(s) which yields

Y (s5) ki(bs + k) Figure 3-21
U(S) My m254 = (ml . . mz)bSS -+ [kl Hiy, + (ml i mz)k2]Sz + k] bs + kl k2 Suspensmn SYSlem
“ . }1:1 —— V2
Figure 3—22 =N | g - AAAA—— mio ——— 1
Mechanical
system. OO o O

Obtain a state-space representation of the system shown in Figure 3—22.

Solution.] The system equations are

i ¥V, + by, + k(3 — ) = O Vo + K(dyvs — ) — e
The output variables for this system are y; and yv.. Define state variables as
X1 = M Xz = i Xz = M2 Xy — Va2
Then we obtain the following equations: s o s
. . 1 .
Xy — xo X> = g [Py — K3 — )] = — G X — g, X2 oy X
e . 1 s s
X3 — Xa Xa = Fris [—&(n — ) + 2] = rria X1 T Fris X3 5 pas
Hence. the state eqquation is
) o 1 o o O and the output equation is Xy
X . = = O A O -
R #TTy T FPTy ~= |, o e Moo 1 o O o 2
o (8] (8] 8] 1 o 1 Mo 8] O 1 O X3
- - - . =
g Ao o L O ATy rris E
FrE FPE

Obtain the transfer function X ,(s)/X;(s) of the mechanical system shown in Figure 3-—23(a). Also
obtain the transfer function E_,(s5)/E;(s) of the electrical system shown in Figure 3-23(b). Show that
these transfer functions of the two systems are of identical form and thus they are analogous systems.
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solution.| In Figure 3—23(a) we assume that displacements x;, x,, and y are measured from their
respective steady-state positions. Then the equations of motion for the mechanical system shown

in Figure 3-23(a) are

bl(xi - xo) + kl(xi - xa) = bZ(j:o - }-’) bz(xo - J") = kay
By taking the Laplace transforms of these two equations, assuming zero initial conditions, we have
by sX,(8) X, (5) |+, [ Xi(5) =X, (5) =bs[s X, (5)—sY(5)] by[sX,(s)— sY(s)]| = ka¥Y(s)
If we eliminate ¥ (s) from the last two equations, then we obtain Bys X, ()
2
bi[sX(5) — sX ()] + k[ Xi(s) — Xo(5)] = basX,(5) — bzsr_,i‘kz
by s
or (b]S -+ kl)Xt-(S) = (b1.5' + ki + bos — ngm XO(S)
(a) x, R>
F 3 >3 R AAAS (b)
igure 327 Ky by |

(a) Mechanical i

system; x., [

(b) analogous b3 €; 2 R, e,

electrical system. X

kz o Cl
] o T o

Hence the transfer function X _,(s) /X ,;(s) can be obta})r(lrf(c;}as ( Il{)l, s + 1 )( Ezz s + 1
For the electrical system shown in Figure 3—23(b). X, (5) = P, b >
the transfer function E,_,(s) /E;(s) is found to be ‘ (k_1 5+ 1) (k_2 5 + 1) -+ k_l Ky
E,(s) Ry +1/C, s (R Cys + 1)(RCos + 1)

E(s) :1/('1_/}?2) + Chs -+ R, +1/C]5_ (R Cys + 1)(RCas + 1) + R,Cys

A comparison of the transfer functions shows that the systems shown in Figures 3—23(a) and (b)

are analogous.

A—35.
Obtain transfer functions F,(5)/FE;(s) of bridged T networks shown in Figures 3—24(a) and (b).

The bridged 7 networks shown can both be represented by the network of
Figure 3—25(a). where we used complex impedances. This network may be modified to that shown

in Figure 3-25(b). In Figure 3-25(b). note that L = I + I, LZ, = (Z5 + 24}13
(ZI] Figurg 3-25 (a) h 7y
Figlll'e R/ O— E}?e)t\]?cr)]r(l‘flf:] reTrms of Oll1 é Z T 4]
Bridged T networks. fgﬂﬂjj‘vﬁfﬁdﬂ““s‘ . .
network.
0 - “11
Hence I, = = Rl I, I, — i i
Fy o Z,

Then the voltages F;(s5) and ~,(s) can be obtained as

— _ Z(Zy + Z,) ZNZy + Z5 + Zy) + Zy (Fs + Z4)
FEF(s) = Z,I, + Z, I, = | Z, + e S - n = = . I
SN Z.Z + Z(Z + Z5 + Z.)
— ez £ T 2B Bl - 3£ 2 1 3 4
E,(s) Zils + Z51, A g 241 — == F o Y5
Hence, the transfer function /~,(s5)/F;(5) of the network shown in Figure 3—25(a) is obtained as
FE.(s) ZaZy + Za (Z + Zn + Zy) e
== 3—3
B 2 aim, e B e, h
For the bridged T network shown in Figure 3—24(a). substitute
1 1
Z, = R, R ST Zs = R, S = e
into Equation (3—38). Then we obtain the transfer function £,(s)/E;(s) to be
Es(s) R?2 +1/Cs[R + R +1/C55] RC, RC,5% + 2RCys + 1

Ei(s) 1/C;s[R + R +1/Cos1+ R2 + Rl/Czsi RC, RC,5% + (ZRC, + RCy)s + 1
Similarly. for the bridged T network shown in Figure 3—24(b). we substitute

P :é__s’ Ly = R,, ZS:E’ Z4s = Ry
into Equation (3—38). Then the transfer function ~,(s5) /F;(5) can be obtained as follows:
1 1 1 1
E (s) s T (ﬁ s R.z) - RICR:Cs”> + 2R Cs + 1
E(s) ('1 . ) 1L I~ R,CR,Cs®> + (2R C + R;C)s + 1
Bl e & e, F B b e e 1 2 ( 1 >C)

Figure 3—26
O perational-
amplifier circuit.

<

[y
i
o + o
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[A—3—=6]
Obtain the transfer function £,(s5)/F;(5) of the op-amp circuit shown in Figure 3—26.

_m‘ The v ltage at P« int A is 1
o ag a e 4 = > (C’,‘; - eo) -+ e,
‘EA(‘S) > ‘Enﬂ(‘s) ‘EO(‘S)I

The Laplace-transformed version of this last equation is

. . o 1/Cs o 1
The voltage at point B is Eg(s) = Riz T1/Cs E,(s) = RoCs + 1 E(5)
Since [ Eg(s) — E (s)]|K = E_(5) and K > 1, we must have E_(5) = Eg(s). Thus
1 _ Eols) = RCs — 1 5 —L/R,C
Hence 5 [E(s) + E.()] = goeg + 1 B E(s)  R.Cs + 1 s +1/R,C

BR=3-7]
Obtain the transfer function /<,(s)/F;(s) of the op-amp system shown in Figure 3-27 in terms of
complex impedances Z,. Z,, Z;.and Z,. Using the equation derived, obtain the transfer function

E (s5)/E;(s) of the op-amp system shown in Figure 3-26.
Ei(s) — Ea(s) _ Ea(s) — E,(s)

Solution.| From Figure 3-27. we find
Zy
Figure 3—27
O perational-
amplifier circuit.
= = : — o
S— E‘,(S)f(:pﬁ Zi)EA(S): S ?j E_(s5) Since E_ (s)—FEg(s)— = = E(5) (3—39)
by substituting Equation (3—340) into Equation (3—39). we obtain
gy N s — T, — g -
[ e i | 4L s | 321 ]E‘—(s) - = E_(5) 3—40)
ZAZF1 + Z>) L
from which we get the transfer function ~,(5)/E,(5) to be )
E,(s) Ty —— T (3—al)
F (5D Z (=, + Za)
To find the transfer function ~_,(s5) /;(5) of the circuit shown in Figure 3— 26, we substitute
=z, = Pl > = R, Z5 = R,. Z, = R,
into Equation (3—1). The result is (=) _ Ry R, — Ryi/Cs . RCs — 1
F(s5) Ri(1/rCcs+ R2) R,Cs + 1

which is. as a matter of course. the same as that obtained in Problem A—3 6.

Obtain the transfer function E,(s5)/E;(5) of the operational-amplifier circuit shown in Figure 3—28.
We will first obtain currents é,.#,.#3.4,. and is. Then we will use node equations at nodes
€ 4 —de,

A and B. | C; — €a g €a — € ; den ; -
e B 2= "Ry - iz = Cr—g; "R s —T ar
At node A, we have i, = i, + iz + iy, OT i ;?le,; j eA}; 5 g <, (::_;4 -1- ;’Z (3—-42)
Al node B, we gel iy — is, Or % -, 7750 (3—43)
2
. i de , ( 1 1 1 ) e; e, 3_44
Bv rewriting Equation (3—42)., we have [ & = + 5 e, = 4 (3= )
3 g Eq =2 Ydr , \Ry TR Ry T R Ra
€ -2
From Equation (3—43)., we get e, = —RC5 P (3—45)
By substituting Equation (3—45) into Equation (3—44). we obtain
C(—RC arzeo)+ L 1)(7Rc)de=oi €; €o
L 22 g2 R, RS R =l oy Ry =
Taking the Laplace transform of this last equation. assuming zero initial conditions. we obtain
—(?C',Rsz_E(s)Jf(1+1in)(—,RcC‘)lei'E,‘(s)—L_.E(S)—M
1 2 2 o R] Rz R3 2 2. o R3 o R]
from which we get the transfer function E,(s5)/FE;(5) as follows:
E,(s) 1
E,(s) RIC RC55%2 + [R>C> + R1Cs + (R/R3)R-C s + (R1/R3)
ANAAA,————————
R
i 2y A is 3 | s IICf
Figure 328 o AAAAA—— ———AAAAA =—= z
Operational- s I R -
amplifier circuit. < T Ce
(= s p— <

Consider the servo system shown in Figure 3-29(a). The motor shown is a servomotor, a dc motor de-

signed specifically to be used in a control system. The operation of this system is as follows: A pair of
potentiometers acts as an error-measuring device. They convert the input and output positions into
proportional electric signals. The command input signal determines the angular position r of the
wiper arm of the input potentiometer. The angular position r is the reference input to the system, and
the electric potential of the arm is proportional to the angular position of the arm. The output shaft
position determines the angular position ¢ of the wiper arm of the output potentiometer. The differ-
ence between the input angular position r and the output angular position ¢ is the error signal e. or
e=r—«c¢

Control Theory-Part2 all Page 29 /52 Dr. Mohsen Soliman, ACC Manager



The potential difference e, — e, = €, is the error voltage. where e, is proportional to r and e, is pro-
portional to ¢: that is, e, = Kyr and e, = K,c, where K, is a proportionality constant. The error volt-
age that appears at the potentiometer terminals is amplified by the amplifier whose gain constant is &, .
The output voltage of this amplifier is applied to the armature circuit of the de motor. A fixed voli-
age is applied to the field winding. If an error exists. the motor develops a torque to rotate the out-
put load in such a way as to reduce the error to zero. For constant field current., the torgue
developed by the motor is T = Ki,
where K, is the motor torque constant and i, is the armature current.

When the armature is rotating. a voltage proportional to the product of the flux and angular
velocity is induced in the armature. For a constant flux. the induced voltage e, is directly propor-

tional to the angular velocity d8/d:, or et
I .

where e, is the back emlf. K; is the back emf constant of the motor, and # is the angular displace-

ment of the motor shaft.

Reference input Input potentiometer (a)

_.__—‘_ Output potentiometer i—__—| [ - - —|

Feedback signal Ve

K,

—
!

Error measuring device Amplifier

R(s) E(s) Eu(s) K, K> . K C(s)
—"“@—* Ko S(Las + Ry (Jos + b,) + KoKss " @* SUs + B)

(b)) A © A

Figure 3-29 (a) Schemalic of servo system: (b) block diagram : (c¢) simplilied block diagram.

Obtain the transfer function between the motor shaft angular displacement ¢ and the error
voltage e,. Obtain also a block diagram for this system and a simplilied block diagram when L,
is negligible.

The speed of an armature-controlled dc servomotor is controlled by the armature volt-

age e,. (The armature voltage e, = K,e, is the output of the amplifier.) The differential equation
for the armature circuit is
di A di - do ~ -
Lo e R, i, + e, = e, or L(,T:" + Ruia + Kz = Ko, (3—406)
d?e ade 3—47
The equation for torgque equilibrium is Jo ? —+ bg TETE T = Ksi, & )

where J; is the inertia of the combination of the motor. load. and gear train referred to the motor
shaft and b, is the viscous-friction coefficient of the combination of the motor. load. and gear train
referred to the motor shaft.
By eliminating i, from Equations (3—46) and (3—47). we obtain

A (s) K, K, .

E,(s) S(L,s + R)(Jos + by) + K,Kss (==
We assume that the gear ratio of the gear train is such that the output shaft rotates s times for each
revolution of the motor shaft. Thus, C(s) = n@(s) (3—49)
The relationship among E,(s5), R(s), and C(s) is E (5) = K[ R(s) — C(5)] = KoE(s) (3-50)
The block diagram of this system can be constructed from Equations (3—48). (3—49), and (3—50).
as shown in Figure 3—29(b). The transfer function in the feedforward path of this system is

G(s) C(s) EO(s) E,(5) KoK, K>n
5 = ==
A(s) E,(s) E(s) s[(L,s + R)(Jos + by) + K, K5 ]
When L, is small, it can be neglected. and the transfer function G (s) in the feedforward path
becomes G(s) KoK, K>n KoK \Kyn/R, (3-51)
5) —

SRS b))+ k] Fas® + L be + R R R s
The term [bo -+ (K2K3/Ra)]s indicates that the back emf of the motor effectively increases the
viscous friction of the system. The inertia Jy; and viscous [riction coefflicient by + (K2 K3/Ra) are

referred to the motor shaftt. When J, and by, + (K2K3/Ra) are multiplied by 1/n2, the inertia and
viscous-friction coefficient are expressed in terms of the output shaft. Introducing new parameters

defined by
J = Jy/r® = moment of inertia referred to the output shaft K = KK\ K, /nR,

B = [bo -+ (K2K3/Ra)]/rz2 = wiscous-friction coefficient referred to the output shaft

the transfer function G(s) given by Equation (3-51) can be simplified, vielding

Ralo
= - m ‘T K _ T - 2 __
C)=ge B T YO =y sy Ve BT T B T R, - KK,

The block diagram of the system shown in Figure 3—29(b) can thus be simplified as shown in
Figure 3—-29(c).
s ok ok sk sk sk ok ok sk sk sk ok ok sk sk sk ok ok sk sk ok ok ok sk sk ok ok sk sk sk ok ok ok sk sk ok ok ok sk ke ok ok sk sk ke ok ok sk sk ke ok ok sk sk ok ok ok sk sk ok ok sk sk sk ok ok ok sk sk ok ok sk sk sk ok o sk ok
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Mathematical Modeling of Fluid and Thermal Systems|{.

4—1 (INTRODUCTION]
This chapter treats mathematical modeling of fluid systems and thermal systems. As the

most versatile medium for transmitting signals and power, fluids liquids and gases—
have wide usage in industry. Liquids and gases can be distinguished basically by their rel-
ative incompressibilities and the fact that a liquid may have a free surface. whereas a gas
expands to fill its vessel. In the engineering field the term pricurnaric describes fluid
systems that use air or gases and Ayvdraiwdlic applies to those using oil.

We first discuss liquid-level systems that are frequently used in process control. Here
we introduce the concepts of resistance and capacitance to describe the dyvnamics of such
systems. Then we treat pneumatic systems. Such systems are extensively used in the au-
tomation of production machinery and in the field of automatic controllers. For instance.
pneumatic circuits that convert the energy of compressed air into mechanical energy enjoy
wide usage. Also, various types of pneumatic controllers are widely used in industry. Next,
we present hyvdraulic servo systems. These are widely used in machine tool systems, aircraft
control systems, etc. We discuss basic aspects of hydraulic servo systems and hydraulic
controllers. Both pneumatic systems and hyvdraulic systems can be modeled easily by using
the concepts of resistance and capacitance. Finally., we treat simple thermal systems. Such
systems involve heat transfer from one substance to another. Mathematical models of
such systems can be obtained by using thermal resistance and thermal capacitance.

(Outline of the Chapter] Section 4—1 has presented introductory material for the
chapter. Section 4—2 discusses liguid-level systems. Section 4—3 treats pneumatic
systems in particular. the basic principles of pneumatic controllers. Section 94— first
discusses hydraulic servo systems and then presents hyvdraulic controllers. Finally.
Section 4—5 analvzes thermal systems and obtains mathematical models of such systems.

4-2 (LIQUID-LEVEL SYSTEMS)

In analyzing systems involving fluid flow. we find it necessary to divide flow regimes
into laminar flow and turbulent flow, according to the magnitude of the Reyvnolds num-
ber. If the Reyvnolds number is greater than about 3000 to 4000, then the flow is turbu-
lent. The flow is laminar if the Reynolds number is less than about 2000. In the laminar
case, fluid flow occurs in streamlines with no turbulence. Systems involving laminar flow
may be represented by linear differential equations.

Industrial processes often involve flow of liquids through connecting pipes and tanks.
The flow in such processes is often turbulent and not laminar. Systems involving turbu-
lent flow often have to be represented by nonlinear differential equations. If the region
of operation is limited. however.such nonlinear differential equations can be linearized.
We shall discuss such linearized mathematical models of liquid-level systems in this sec-
tion. Note that the introduction of concepts of resistance and capacitance for such liquid-
level syvstems enables us to describe their dynamic characteristics in simple forms.

(Resistance and Capacitance of Liquid-Level Systems.] Consider the flow
through a short pipe connecting two tanks. The resistance R for liquid flow in such a
pipe or restriction is defined as the change in the level difference (the difference of the
liquid levels of the two tanks) necessary to cause a unit change in flow rate:; that is,

change in level difference. m

)R =

change in flow rate. m>/sec
Since the relationship between the flow rate and level difference differs for the laminar
flow and turbulent flow., we shall consider both cases in the following.
Consider the liquid-level system shown in Figure 4—1(a). In this system the liquid
spouts through the load valve in the side of the tank. If the flow through this restriction
is laminar. the relationship between the steady-state flow rate and steadv-state head at

the level of the restriction is given by

Control valwve Head L (b)

QO+ gy
EXNG SN

(a)

Load valve =

T+ Ao
O
\ Flow rate
Capacitance Resistance N
Figure 4—1
(a) Liguid-level systermn: Wil
(b)) head-versus-flow-rate curwve. —F =
where @ — steady-state ligquid flow rate. m~/sec
K — coefficient. m?/sec FH — steady-state head. m JIT T
For laminar flow, the resistance R, is obtained as R, = e — E

The laminar-flow resistance is constant and is analogous to the electrical resistance.
It the flow through the restriction is turbulent. the steady-state flow rate is given by

- = K~NH 4—1
where @ = steady-state liguid flow rate, m~ /sec < C >
K = coefficient.m H = steady-state head. m
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The resistance R, for turbulent flow is obtained from R, — d

Since from Equation (4—1) we obtain dO = ZL = dH Ade
~ ~ 2
we have dH 2 & H ~H _ 2H Thus. R, —
dQ K o [@] o

The value of the turbulent-flow resistance R, depends on the flow rate and the head. The
value of R,. however. may be considered constant if the changes in head and flow rate

are small. By use of the turbulent-flow resistance. the relationship between O and H
can be given by o =

R
Such linearization is valid. provided that éhanges in the head and flow rate from their
respective steadyv-state values are small.

In many practical cases. the value of the coefficient K in Equation (4—1).which depends
on the flow coefficient and the area of restriction. is not known. Then the resistance may
be determined byvy plotting the head-versus-flow-rate curve based on experimental data
and measuring the slope of the curve at the operating condition. An example of such a plot
is shown in Figure 4—1(b). In the figure, point  is the steadyv-state operating point. The tan-
gent line to the curve at point 2~ intersects the ordinate at point (O, 7&) Thus, the slope
of this tangent line is 2/ /O . Since the resistance R, at the operating point F is given by
2H /. the resistance R, is the slope of the curve at the operating point.

Consider the operating condition in the neighborhood of point 2. Define a small
deviation of the head from the steadv-state value as /22 and the corresponding small
change of the flow rate as . T'hen the slope of the curve at point 7 can be given by
o 2H _ g
o
The linear approximation is based on the fact that the actual curve does not differ much
from its tangent line if the operating condition does not vary too much.

The capacitance C of a tank is defined to be the change in quantity of stored liguid
necessary to cause a unit change in the potential (head). (The potential is the quantity
that indicates the energv level of the system.)

& =

Slope of curve at point P~ =

change in liguid stored., m~>

change in head, m
It should be noted that the capacity (m~) and the capacitance (m?) are different. The
capacitance of the tank is equal to its cross-sectional area. If this is constant. the capac-
itance is constant for any head.

(Liguid-Level Systems.] Consider the system shown in Figure 4—1(a). The vari-
ables are defined as follows:

O = steady-state flow rate (before any change has occurred). m~/sec
g:; = small deviation of inflow rate from its steady-state value. m3/sec
g, =— small deviation of outflow rate from its steady-state value, m~>/sec
H — steady-state head (before any change has occurred)., m

/1 = small deviation of head from its steady-state value. m

As stated previously, a system can be considered linear if the flow is laminar. Even if
the flow is turbulent. the system can be linearized if changes in the variables are kept
small. Based on the assumption that the system is either linear or linearized. the differential
equation of this system can be obtained as follows: Since the inflow minus outflow during
the small time interval Jdr is equal to the additional amount stored in the tank., we see that

C dh = (g; — q.,)dr .
From definition of resistance. the relationship between g, and /. is given by do — R
The differential equation for this system for a constant value of R becomes

RC 4l + n — Rqg, o By

Note that RC is the time constant of the system. Taking the Laplace transforms of both
sides of Equation (4—2). assuming the zero initial condition. we obtain
(RCs + 1)H(s) RO (s) where H(s) = F£[Aa] and Q. (s) — Pl qg;]

O:(s) RCs + 1
If. howewver. g, is taken as the output, the input being the same, then the transfer
function is QO,(s) 1

o) = Bcs = 1 where we have used the relationship QO,(s) = % H(s)
i

ITt ¢7; is considered the input and A tge( o)utput_ the transfer function of the system is
s R

(Liguid-Level Systems with Interaction.] Consider the system shown in Figure
4—2_ In this system. the two tanks interact. Thus the transfer function of the system is not
the product of two first-order transfer functions.

In the following. we shall assume only small variations of the variables from the

steady-state values. Using the symbols as defined in Figure 42, we can obtain the
following equations for this system:

Fi,—h dFr fi, - drlr
71121 2= (4—3) <, Trl = g — q, () R; = g> (4—5) CzTrz = g, — g2 (4—6)
It g is Consic(le)red the input and g- the output. the transfer function of the system is
25 1
— 47
QO(s) R CIR,Cy5° + (R,C;, + R,C, + R,Cy)s + 1 ( )

O+
Q_ﬁ% Tank 1 Tank 2

R Q : Steady-state flow rate
= O+ g Hy : Steady-state liquid level of tank 1
‘f‘ [ 1 » H> @ Steady-state liquid level of tank 2
< — O+ q s

Figure 4—-2 [.iquid-level system with interaction.
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It is instructive to obtain Equation (4—7). the transfer function of the interacted
svstem. by block diagram reduction. From Equations (4—3) through (4—6). we obtain the
elements of the block diagram. as shown in Figure 4-—3(a). By connecting signals prop-
erly. we can construct a block diagram. as shown in Figure 4—3(b). This block diagram
can be simplified. as shown in Figure 4—3(c). Further simplifications result in
Figures 4—-3(d) and (e). Figure 4—3(e) is equivalent to Equation (4—7).

(s) 1 Hy(s) ©Oi(5) 1 Ho(s) Hils) < 1 Qi (s) Hals) 1 Os(5)
< N =
Cys - @ Cos Ry Ro

(a) "Ql(‘” *Qz(sl ‘l‘ Ha(s)

(s) C : 1 Hy(s) 1 Qi(s) < 1 1 Oa(5)
Cl_‘i' RI CQ.S' Hz(.S‘) R2

(b) 4

RzCIS
1 1 Qi(s) < 1 1 Oa(s)
C15 Rl CQ_.S' Rz
Oa(5)
N aNFE] = C] — O(s) 1 Oa(s)
1 & 5 —r— j——
(d) — — RIC\R2Cos2 + (R Cy + RyCr + RyCy)s + 1

R2C|S

Figure 4-3 (e)

(a) Elements of block diagram of system shown in Figure 4—2; (b) block diagram of the
system: (c)—(e) successive reductions of the block diagram.

Notice the similarity and difference between the transfer function given by
Eguation (4—7) and that given by Equation (3—33). The term R, C,;s that appears in the
denominator of Equation (4—7) exemplifies the interaction between the two tanks.
Similarly, the term R, C,s5 in the denominator of Equation (3—33) represents the inter-
action between the two RC circuits shown in Figure 3—8.

1—-3 PNEUMATIC SYSTEMS]
In industrial applications pneumatic systems and hydraulic systems are frequently
compared. Therefore, before we discuss pneumatic systems in detail. we shall give a brieft
comparison of these two kinds of systems.
| Comparison Between Pneumatic Systems and Hydraulic Systems.| The fluid
generally found in pneumatic systems is air: in hydraulic systems it is oil. And it is pri-
marily the different properties of the fluids involved that characterize the differences
between the two systems. These differences can be listed as follows:
1. Ajir and gases are comprressible. whereas oil is incompressible (except at high pressure).
2. Air lacks lubricating property and always contains water vapor. Oil functions as a
hyvdraulic fluid as well as a lubricator.
3. The normal operating pressure of pneumatic systems is very much lower than that
of hydraulic systems.
4. Outrput powers of pneumatic systems are considerably less than those of hydraulic
systems.
S. Accuracy of pneumatic actuators is poor at low wvelocities, whereas accuracy of
hyvdraulic actuators may be made satisfactory at all velocities.

6. In pneumatic systems. external leakage is permissible to a certain extent. but in-
ternal leakage must be avoided because the effective pressure difference is rather
small. In hydraulic systems internal leakage is permissible to a certain extent. but
external leakage must be avoided.

7. No return pipes are required in pneumatic systems when air is used. whereas they
are always needed in hydraulic systems.

8. NWormal operating temperature for pneumatic systems is 57 to 60°C (41° to 140°F).
The pneumatic system. however, can be operated in the 0° to 200°C (32° to 392°F)
range. Pneumatic systems are insensitive to temperature changes. in contrast to
hvdraulic svstems, in which fluid friction due to viscosity depends greatly on tem-
perature. Normal operating temperature for hydraulic systems is 20° to 70°C (68°
to 158°F).

9. Pneumatic systems are fire- and explosion-proof. whereas hyvdraulic systems are
not, unless nonflammable liguid is used.

In what follows we begin with a mathematical modeling of pneumatic systems. Then
we shall present pneumatic proportional controllers.

We shall first give detailed discussions of the principle by which proportional
controllers operate. Then we shall treat methods for obtaining derivative and integral
control actions. Throughout the discussions, we shall place emphasis on the
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fundamental principles, rather than on the details of the operation of the actual
mechanisms.

[Pneumatic Systems.| The past decades have seen a great development in low-
pressure pneumatic controllers for industrial control systems. and today they are used
extensively in industrial processes. Reasons for their broad appeal include an explosion-
proof character, simplicity. and ease of maintenance.

|IResistance and Capacitance of Pressure Systems. Many industrial processes
and pneumatic controllers involve the flow of a gas or air through connected pipelines
and pressure vessels.

Consider the pressure system shown in Figure 4—4(a). The gas flow through the
restriction is a function of the gas pressure difference p; — p,. Such a pressure system
may be characterized in terms of a resistance and a capacitance.

The gas flow resistance R may be defined as follows:

R change in gas pressure difference. lb;/ft? or R — d(AP)
o change in gas flow rate. lb/sec deg
where d(A ) is a small change in the gas pressure difference and dqg is a small change
in the gas flow rate. Computation of the value of the gas flow resistance R may be quite
time consuming. Experimentally, however, it can be easily determined from a plot of
the pressure difference versus flow rate by calculating the slope of the curve at a given

operating condition. as shown in Figure 4—4(b).
The capacitance of the pressure vessel may be defined by

(4-8)

o change in gas stored. lb or c — dret

change in gas pressure. b, /ft? Y =4
Figure 4—4 ] Resistance Ap
(a) Schematic R
diagram of a P ——— £+ po

. - Pl

ressure system: B o
P - P+ p, /
(b) pressure- (a)
difference-versus- Capacitance C
flow-rate curve. L
O o
where C = capacitance. lb-ft?/1b; 7t = mass of gas in vessel, 1b p = density, Ib/1t°

p = gas pressure. lb/ft? = wvolume of vessel. It3?

The capacitance of the pressure system depends on the type of expansion process
involved. The capacitance can be calculated by use of the ideal gas law. If the gas ex-
pansion process is polytropic and the change of state of the gas is between isothermal

ks & id atic. \'d e
and adiabatic. then P(E) _ Pn — constant — K (4—10)
where n = polytropic exponent. = - — R

For ideal gases. prPv = RT or PV — “ar r
where p = absolute pressure. lb/ft? R = universal gas constant. ft-1b,/1b-mole °R
¥ = wvolume occupied by 1 mole of a gas. ft3/1b-mole 7 = absolute temperature. "R
» = specific volume of gas, ft°/Ib A = molecular weight of gas per mole. Ib/1b-mole
Thus Pv — % = %T = Rgasd’ where Ry, =— gas constant, ft-1b¢/1b “R. (4—-11)

The polytropic exponent # is unity for isothermal expansion. For adiabatic expansion,
71 is equal to the ratio of specific heats c,/c, . where ¢, is the specific heat at constant pres-
sure and c, is the specific heat at constant volume. In many practical cases, the value of
r1 is approximately constant. and thus the capacitance may be considered constant.

The walue of dp/dp is obtained from Equations (4—10) and (4-11). From

Equation (4—10) we have = Fomgpe—1 dp o dp 1 = el = P
dp Krnp” e’ yals!
Substituting Equation (4—11) into this last equation. we get dp/dp =1/ nR,;T
The capacitance C is then obtained as O — v (4—12)
iR e

gas
The capacitance of a given vessel is constant if the temperature stavs constant. (In many

practical cases. the polyvtropic exponent s is approximately 1.0 — 1.2 for gases in unin-
sulated metal vessels.)

| Pressure Systems. Consider the system shown in Figure 4—4(a). If we assume
only small deviations in the variables from their respective steadv-state values. then this
system may be considered linear. Let us define

P = gas pressure in vessel at steady state (before changes in pressure occurred), b/ ft?
p; = small change in inflow gas pressure. lb/ft> 72 — mass of gas in the vessel. 1b
P. = small change in gas pressure in the vessel. 1b./ft” g = gas flow rate. 1b/sec
- 3
VvV = volume of the vessel, ft3 p = density of gas. 1b/ft
For small values of p, and p,. the resistance K given by Equation (4—8) becomes constant
and may be written as _ ¢ — Po
The capacitance C is given by Equation (4—9). or 9 C = %
Since the pressure change dyp, times the capacitance C is equal to the gas added to the
vessel during dr seconds, we obtain o
C dp, — qdr  or O dro __ Pi }_2 Po  which can be written as RC (;Zo -+ Po = Pi
IT p; and p, are considered the input and output. respectively. then the transfer function
of the system is P, (s) 1
P(s)  RCs + 1

where RC has the dimension of time and is the time constant of the system.
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[Pneumatic Nozzle—Flapper Amplifiers| A schematic diagram of a pneumatic
nozzle—flapper amplifier is shown in Figure 4-5(a). The power source for this amplifier
is a supply of air at constant pressure. The nozzle—flapper amplifier converts small
changes in the position of the flapper into large changes in the back pressure in the noz-
zle. Thus a large power output can be controlled by the very little power that is needed
to position the flapper.

In Figure 4—5(a), pressurized air is fed through the orifice, and the air is ejected from
the nozzle toward the flapper. Generally. the supply pressure F; for such a controller
is 20 psig (1.4 kg/cm? gage). The diameter of the orifice is on the order of 0.01 in.
(0.25 mm) and that of the nozzle is on the order of 0.016 in. (0.4 mm). To ensure prop-
er functioning of the amplifier. the nozzle diameter must be larger than the orifice
diameter.

In operating this svstem. the flapper is positioned against the nozzle opening. The
nozzle back pressure F, is controlled by the nozzle—flapper distance X . As the flapper
approaches the nozzle, the opposition to the flow of air through the nozzle increases, with
the result that the nozzle back pressure P, increases. If the nozzle is completely closed
by the flapper. the nozzle back pressure F, becomes equal to the supply pressure FP. If
the flapper is moved away from the nozzle, so that the nozzle—flapper distance is wide
(on the order of 0.01 in.), then there is practically no restriction to flow., and the nozzle
back pressure F, takes on a minimum value that depends on the nozzle—flapper device.
(The lowest possible pressure will be the ambient pressure £,.)

Note that. because the air jet puts a force against the flapper. it is necessary to make
the nozzle diameter as small as possible.

A typical curve relating the nozzle back pressure F, to the nozzle—flapper distance
X is shown in Figure 4—5(b). The steep and almost linear part of the curve is utilized in
the actual operation of the nozzle—flapper amplifier. Because the range of flapper dis-
placements is restricted to a small value. the change in output pressure is also small.
unless the curve is very steep.

The nozzle—flapper amplifier converts displacement into a pressure signal. Since
industrial process control systems require large output power to operate large pneu-
martic actuating valves, the power amplification of the nozzle—flapper amplifier is usually
insufficient. Consequently, a pneumatic relay is often needed as a power amplifier in
connection with the nozzleflapper amplifier.

Figure 4-5 (@) Input —=—  PpT
(a) Schematic dilagrarn of a ? Ps
pneumatic nozzle— Air . X
flapper amplifier: supply ‘/O“ﬁce s _+AF
(b) characteristic —— ~ q
curve relating nozzle Py T | <
back pressure and Nozzle | Flapper
nozzle—flapper distance.
¢ To control valve Py X
> 0
IPneumatic Relays.) In practice. in a pneumatic controller. a nozzle—flapper

amplifier acts as the first-stage amplifier and a pneumatic relay as the second-
stage amplifier. The pneumatic relay is capable of handling a large quantity of

airflow.
A schematic diagram of a pneumatic relay is shown in Figure 4—6(a). As the nozzle

back pressure F, increases, the diaphragm wvalve moves downward. The opening to
the atmosphere decreases and the opening to the pneumatic valve increases, thereby
increasing the control pressure F.. When the diaphragm wvalve closes the opening to
the atmosphere, the control pressure F,. becomes equal to the supply pressure F;.
When the nozzle back pressure /7, decreases and the diaphragm valve moves upward
and shuts off the air supply, the control pressure F,. drops to the ambient pressure F,.
The control pressure F. can thus be made to vary from O psig to full supply pressure,
usually 20 psig.

The total movement of the diaphragm wvalve is very small. In all positions of the
valve., except at the position to shut off the air supply. air continues to bleed into the at-
mosphere. even after the equilibrium condition is attained between the nozzle back
pressure and the control pressure. Thus the relay shown in Figure 4—6(a) is called a
bleed-tyvpe relay.

There is another type of relay. the nonbleed type. In this one the air bleed stops
when the equilibrium condition is obtained and. therefore., there is no loss of pres-
surized air at steady-state operation. WNWote. howevwver. that the nonbleed-type relay
must have an atmospheric relief to release the control pressure FP. from the pneu-
matic actuating valve. A schematic diagram of a nonbleed-type relay is shown in Fig-
ure 4—6(b).

In either type of relay, the air supply is controlled by a wvalve. which is in turn
controlled by the nozzle back pressure. Thus, the nozzle back pressure is converted into
the control pressure with power amplification.

Since the control pressure F. changes almost instantanceously with changes in the
nozzle back pressure F,., the time constant of the pneumatic relay is negligible
compared with the other larger time constants of the pneumatic controller and
the plant.
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Figure 4-6 (a) T back pressure Pp Ph
Schematic atmosghme Figure 4-7
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(t:liedl'-lt} petlielﬂ}. _pﬂtiumatlc atmosphere To acting relay.
D) schematic valve .
diagram of a Air SUEP_]_Y ‘ Pne“ﬂm'g‘; 5111\;])Iplv v
nonbleed-type £ valve 7 <5
relay. ' y Ps

It is noted that some pneumatic relays are reverse acting. For example., the relay
shown in Figure 4—7 is a reverse-acting relay. Here., as the nozzle back pressure 7,
increases. the ball valve is forced toward the lower seat. thereby decreasing the control
pressure F.. Thus. this relay is a reverse-acting relav.

[Pneumatic Proportional Controllers (Force-Distance Type).] Two tvpes of pneu-
matic controllers. one called the force-distance type and the other the force-balance type.
are used extensively in industry. Regardless of how differently industrial pneumatic con-
trollers may appear. careful study will show the close similarity in the functions of the
pneumartic circuit. Here we shall consider the force-distance tyvpe of pneumatic controllers.

Figure 4—8(a) shows a schematic diagram of such a proportional controller. The nozzle—
flapper amplifier constitutes the first-stage amplifier. and the nozzle back pressure is
controlled by the nozzle—flapper distance. The relay-type amplifier constitutes the second-
stage amplifier. The nozzle back pressure determines the position of the diaphragm wvalve
for the second-stage amplifier. which is capable of handling a large quantity of airflow.

In most pneumatic controllers. some type of pneumatic feedback is emploved. Feed-
back of the pneumatic output reduces the amount of actual movement of the flapper.
Instead of mounting the flapper on a fixed point. as shown in Figure 4-8(b). it 1s often
pivoted on the feedback bellows, as shown in Figure 4—-8(c). The amount of feedback can
be regulated bvy introducing a variable linkage between the feedback bellows and the
flapper connecting point. The flapper then becomes a floating link. It can be moved by
both the error signal and the feedback signal.

The operation of the controller shown in Figure 4—8(a) is as follows. The input sig-
nal to the two-stage pneumatic amplifier is the actuating error signal. Increasing the
actuating error signal moves the flapper to the left. This mowve will. in turn. increase the
nozzle back pressure. and the diaphragm wvalve moves downward. This results in an in-
crease of the control pressure. This increase will cause bellows F to expand and move
the flapper to the right. thus opening the nozzle. Because of this feedback. the nozzle—
flapper displacement is very small. but the change in the control pressure can be large.

It should be noted that proper operation of the controller requires that the feed-
back bellows move the flapper less than that movement caused by the error signal alone.
(If these two movements were equal. no control action would result.)

Equations for this controller can be derived as follows. When the actuating error is

ZETO, OT € 0. an equilibrium state exists with the nozzle—flapper distance equal to X , the

Actuating error signal ———r <i - . : 4
(a) p= yFlapper Error signal Error i;gn"xl
— — O — —~— O —
Py + prp )‘(f T
Orifice
—— R _
-~ 4 =
A4 -
O
h =] Feedb k
. Pneumatic relay - - ) (<) eesig?rfal
(=4 =
™~ o
d) I - |
/ e — = —— [ —————
A - B
a + D - cr
. a +
(s s XS N () FT(s) B o (s)
K KP ———
@ + D
) t « g S
(=] - -
Figure 4—8 a+ b5 s
(a) Schematic of a force-distance type of pneumatic proportional controller:
(b) flapper mounted on fixed point: (c) flapper mounted onfeedback bellows:
(d) displacement x as a result of addition of two small displacements:
(e) block diagram for controller: (1) simplified block diagram for controller.

displacement of bellows equal to ¥, the displacement of the diaphragm equal to Z, the
nozzle back pressure equal to P,,, and the control pressure equal to P.. When an actuating
error exists, the nozzle—flapper distance. the displacement of the bellows, the displacement
of the diaphragm. the nozzle back pressure. and the control pressure deviate from their re-
spective equilibrium values. Let these deviations be x, v, z, p,.and p..respectively. ( The pos-
itive direction for each displacement variable is indicated by an arrowhead in the diagram.)
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Assuming that the relationship between the variation in the nozzle back pressure and
the variation in the nozzle—flapper distance is linear. we have

P = K x (4-13)
where K, is a positive constant. For the diaphragm wvalve.
Ps — Kzz (4_14)

where K5 is a positive constant. The position of the diaphragm wvalve determines the
control pressure. If the diaphragm wvalve is such that the relationship between p,. and z

is linear. then P = Ksz (4—-15)

where K; is a positive constant. From Equations (4—-13). (4—14), and (4—15), we obtain
K K, K- g

where K = K, K;/K, is a positive constant. For the flapper. since there are two small

movements (e and y) in opposite directions, we can consider such movements separately
and add up the results of two movements into one displacement x. See Figure 4—-85S(d).

Thus, for the flapper movement. we have b
= e e D)
The bellows acts like a spring. and the following equation holds true:

where A is the effective area of the bellows and Ak, is the equivalent spring constant—
that is. the stiffness due to the action of the corrugated side of the bellows.

Acssuming that all variations in the variables are within a linear range., we can obtain
a block diagram for this system from Equations (4—16). (4—17), and (4—18) as shown in
Figure 4—8(e). From Figure 4—8(e). it can be clearly seen that the pneumatic controller
shown in Figure %S(a)}gt?e}jfis a feedback system. The transfer function between p. and
e is given by cls) _ b/(a+b) K _

= Y E(s) 1+K al(a+b)Ak,) e e E
A simplified block diagram is shown in Figure 4—-8(f). Since p,. and e are proportional.
the pneumatic controller shown in Figure 4—8(a) is a preumaric proportional conirroller.
As seen from Equation (4—19). the gain of the pneumatic proportional controller can be
widely varied by adjusting the flapper connecting linkage. [The flapper connecting link-
age is not shown in Figure 4-8(a).] In most commercial proportional controllers an ad-
justing knob or other mechanism is provided for varving the gain by adjusting this linkage.

As noted earlier, the actuating error signal moved the flapper in one direction, and
the feedback bellows moved the flapper in the opposite direction. but to a smaller degree.

X
Vo P,
P, 4»? A b P, p
T = :
- (r
T Pa — Pa —
7‘— ﬁ"— L8] X ] X
Py P (b)
Figure 4—9 (a) Pneumatic controller without a feedback mechanism:
(b)) curves F, versus X and FP. versus X .

The effect of the feedback bellows is thus to reduce the sensitivity of the controller. The
principle of feedback is commonly used to obtain wide proportional-band controllers.

Pneumatic controllers that do not have feedback mechanisms [which means that
one end of the flapper is fixed. as shown in Figure 4-9(a)] have high sensitivity and are
called pricurnaric two-positiornt corntrollers or preurnatic orn—off controllers. In such a con-
troller. only a small motion between the nozzle and the flapper is required to give a
complete change from the maximum to the minimum control pressure. The curves re-
lating FF, to X and F.to X are shown in Figure 4—9(b). Notice that a small change in X
can cause a large change in F, . which causes the diaphragm valve to be completely open
or completely closed.

(Pneumatic Proportional Controllers (Force-Balance Type).] Figure 4-10 shows
a schematic diagram of a force-balance tyvpe pneumatic proportional controller. Force-
balance type controllers are in extensive use in industry. Such controllers are called stack
controllers. The basic principle of operation does not differ from that of the force-distance
tvpe controller. The main advantage of the force-balance tyvpe controller is that it elimi-
nates many mechanical linkages and pivot joints., thereby reducing the effects of friction.

In what follows, we shall consider the principle of the force-balance type controller.
In the controller shown in Figure 4—10. the reference input pressure £, and the output
pressure £, are fed to large diaphragm chambers. Note that a force-balance type pneu-
matic controller operates only on pressure signals. Therefore, it is necessary to convert
the reference input and system output to corresponding pressure signals.

Py =k(P.+ p.)
i At I —_~
Figure 4—10 mosphere
Schematic diagram Reference I A ]

- ——
of a force-balance input pressure Ax
type pneumatic Output Py
proportional pressure A, Control
controller . P pressure
: Alr supply — —= /_"I l ~— ——
I"‘ X PC +pc.‘
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A s in the case of the force-distance tyvpe controller, this controller emplovs a flapper.
nozzle, and orifices. In Figure 4—-10. the drilled opening in the bottom chamber is the
nozzle. The diaphragm just above the nozzle acts as a flapper.

The operation of the force-balance type controller shown in Figure 4—10 may be
summarized as follows: 20-psig air from an air supply flows through an orifice. causing
a reduced pressure in the bottom chamber. Alir in this chamber escapes to the atmos-
phere through the nozzle. The flow through the nozzle depends on the gap and the
pressure drop across it. An increase in the reference input pressure P, while the out-
put pressure F, remains the same., causes the valve stem to move down. decreasing the
gap between the nozzle and the flapper diaphragm. This causes the control pressure £,

to increase. Let P — P — P, (4—20)

If p. — O, there is an equilibrium state with the nozzle—flapper distance equal to X and

the control pressure equal to P.. At this equilibrium state. P, = P_.k (where K = 1) and
X = a(P.A, — P_.kA,) where v is a constant. (4—21)

Let us assume that p. = 0 and define small variations in the nozzle—flapper distance
and control pressure as x and p.. respectively. Then we obtain the following equation:

X + x = x[(P. + p)A, — (P + p)kA, — pAs — A,)] (4—22)
From Equations (4—21) and (4—22). we obtain
x = alp(l — k)A;, — pA> — AL)] (4-23)

At this point. we must examine the quantity x. In the design of pneumatic controllers,
the nozzleflapper distance is made quite small. In view of the fact that x /o is very mmuch

smaller than p.(1 — k), or pe(Az — Al)—that is. for p. = O
& = Pl — k)A, a = plAa. — A)
we may neglect the term x in our analvsis. Equation (4—23) can then be rewritten to
reflect this assumption as follows: p (1 — K)yAa, = pe(A2 — A1)
and the transfer function between p_.and p,. becomes f:(s5) _ A, — A, 1 - K
P.(s) A 1 — k& P

where p. is defined by Equation (4—20). The controller shown in Figure 4—10 is a
proportional controller. The value of gain K, increases as &k approaches unity. Note that
the value of kK depends on the diameters of the orifices in the inlet and outlet pipes of
the feedback chamber. (The value of kK approaches unity as the resistance to flow in the
orifice of the inlet pipe is made smaller.)

(Pneumatic Actuating Valves.] Omne characteristic of pneumatic controls is that
they almost exclusively employ pneumatic actuating valves. A pneumatic actuating valve
can provide a large power output. (Since a pneumatic actuator requires a large power
input to produce a large power output, it is necessary that a sufficient quantity of pres-
surized air be available.) In practical pneumatic actuating valves. the valve characteris-
tics may not be linear: that is. the flow may not be directly proportional to the valve
stem position. and also there may be other nonlinear effects. such as hvsteresis.

Consider the schematic diagram of a pneumatic actuating valve shown in Figure 4—-11.
Assume that the area of the diaphragm is . A. A ssume also that when the actuating error
is zero. the control pressure is equal to P, and the valve displacement is equal to X .

In the following analvsis. we shall consider small variations in the variables and lin-
carize the pneumatic actuating valve. LLet us define the small variation in the control
pressure and the corresponding valve displacement to be p,. and x. respectively. Since
a small change in the pneumatic pressure force applied to the diaphragm repositions
the load. consisting of the spring. viscous friction. and mass, the force-balance equa-

tion becomes Ap. = mx + bx + kx
where m — mass of the valve and valve stem b = wiscous-friction coefficient
Kk = spring constant

If the force due to the mass and viscous [riction are negligibly small. then this last equa-
tion can be simplified to Ap. = kx

e X(s) A _
The transfer function between x and p_. thus becomes P(s) Kk K,

[
P, +P.s-\ ——— Q + g;
[ SN Y | s |
" %

Figure 4—11
Schematic
diagram
of a pneumatic
actuating valve.

Xoux Figure 4-12
Control system.

where X (s) = ¥[x]and P.(s) = ¥| p.|-If g;.the change in flow through the pneumatic
actuating valve, is proportional to x. the change in the valve-stem displacement, then

Qi(s) _

K
X (s a
where Q;(s) = ¥[qg;] and K, is a Constan)t. The transfer function between g; and p,_
becomes Qi(s) _ KK — K where K, is a constant.
P(s) — fefa =
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The standard control pressure for this kind of a pneumatic actuating valve is between
3 and 15 psig. The valve-stem displacement is limited by the allowable stroke of the
diaphragm and is only a few inches. If a longer stroke is needed. a piston—spring
combination may be emploved.

In pneumatic actuating valves, the static-friction force must be limited to a low value
so that excessive hysteresis does not result. Because of the compressibility of air., the
control action may not be positive: that is. an error may exist in the valve-stem position.
The use of a valve positioner results in improvements in the performance of a pneu-
matic actuating valwve.

(Basic Principle for Obtaining Derivative Control Action.] We shall now present
methods for obtaining derivative control action. We shall again place the emphasis on
the principle and not on the details of the actual mechanisms.

The basic principle for generating a desired control action is to insert the inverse of
the desired transfer function in the feedback path. For the system shown in Figure 4—-12.

the closed-loop transfer function is C(s) _ G (s
R(s) 1 + G(s)H (s) C(s) 1
If |G(s)H (s)| = 1.then C(s5)/R(s) can be modified to R(s) — H(s)

Thus., if proportional-plus-derivative control action is desired. we 1nsert an element
having the transfer function 1 /(7 's + 1) in the feedback path.

& ——

F= E(s) I X(s) Fo(s5)
—— K -
e — o + b
(b)
I=3 -~
o + B Koo

P+ p.
Figure 4—13
(a) Pneumatic proportional controller: (b) block diagram of the controller.

Consider the pneumatic controller shown in Figure 4-13(a). Considering small changes
in the variables, we can draw a block diagram of this controller as shown in Figure 4-13(b).
From the block diagram we see that the controller is of proportional type.

We shall now show that the addition of a restriction in the negative feedback path
will modify the proportional controller to a proportional-plus-derivative controller. or
a PD controller.

Consider the pneumatic controller shown in Figure 4—-14(a). Assuming again small changes
in the actuating error. nozzle—flapper distance, and control pressure., we can summarize
the operation of this controller as follows: Let us first assume a small step change in e.

Figure 4—14

(a) Pneumatic ~.
proportional-plus- — o=
derivative controller:
(b)) step change in e
and the corre-
sponding changes in

x and p. plotted P + . r
wversus i (c) block
diagram of the E(s) . XD o(s)
controller. - =5 =~
[=3 -~ 1 I
=) P o RCs + 1

Then the change in the control pressure p,. will be instantaneous. The restriction R will mo-
mentarily prevent the feedback bellows from sensing the pressure change p..Thus the feed-
back bellows will not respond momentarily, and the pneumatic actuating valve will feel the
full effect of the movement of the flapper. As time goes on. the feedback bellows will expand.
The change in the nozzle—flapper distance x and the change in the control pressure p. can
be plotted against time 7. as shown in Figure 4—-14(b). At steady state. the feedback bellows
acts like an ordinary feedback mechanism. The curve p. versus r clearly shows that this con-
troller is of the proportional-plus-derivative tyvpe.

A block diagram corresponding to this pneumatic controller is shown in
Figure 4—14(c). In the block diagram. K is a constant., A is the area of the bellows. and
Kk, is the equivalent spring constant of the bellows. The transfer function between p,. and
e can be obtained from the block diagram as follows:

P.(s) _ K b/la+b)
E(s) 1+Ka/(at+b)(AKI(IARCS+1))
In such a controller the loop gain |KaA/[(a + b)Yk (RCs —+ 1)“ is made much greater
than unity. Thus the transfer function P.(s)/FE(s5s) can be simplified to give
£ w1 7 where s, = A n,
Thus. delayed negative feedback. or the transfer function 1/(RCs + 1) in the feedback
path. modifies the proportional controller to a proportional-plus-derivative controller.

Note that if the feedback valve is fully opened. the control action becomes propor-
tional. If the feedback wvalwve is fully closed. the control action becomes narrow-band
proportional (on—off).
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(()btaining Pneumatic Proportional-Plus-Integral Control Action] Consider
the proportional controller shown in Figure 4—13(a). Considering small changes in the
variables, we can show that the addition of delaved positive feedback will modify this
proportional controller to a proportional-plus-integral controller, or a PI controller.

Consider the pneumatic controller shown in Figure 4—-15(a). The operation of this con-
troller is as follows: The bellows denoted by I is connected to the control pressure source
without any restriction. The bellows denoted by Il is connected to the control pressure
source through a restriction. Let us assume a small step change in the actuating error. This
will cause the back pressure in the nozzle to change instantancously. Thus a change in the
control pressure p. also occurs instantaneously. Due to the restriction of the valve in the
path to bellows 11, there will be a pressure drop across the valve. As time goes on. air will
flow across the valve in such a way that the change in pressure in bellows I1 attains the value
Pe- Thus bellows 11 will expand or contract as time elapses in such a way as to move the
flapper an additional amount in the direction of the original displacement e. This will cause
the back pressure p. in the nozzle to change continuously, as shown in Figure 4—-15(b).

Figure 4—15 e =9 e A (b)
(a) Pneumaltic =2 o4 -
proportional-plus- . f

integral controller: . — w— ;

(b) step change in €
and corresponding

changes in x and gr_
prlotted versus 7:

(c) block diagram of
the controller:

() simplified block =
diagram.

E(s) X(s) P.(s) £E(s) X(s) Fo(s)
— b - b ' ' [s
ar b @ > K o &“ % K

' {1 ey I o N
RCs + 1 a A 1
(d) a A (©) a+ b ko RCs + 1
a+b kg
‘ a A
a+ b ks

Note that the integral control action in the controller takes the form of slowly
canceling the feedback that the proportional control originally provided.

A block diagram of this controller under the assumption of small variations in the
variables is shown in Figure 4—15(c). A simplification of this block diagram vields
Figure 4—15(d). The transfer function of this controller is

Fe(s) _ K b/(a+b)
E(s) 1 +(Ka/(a+b)(A/k,) (1- 1/ (RCs+1))

where K is a constant. A is the area of the bellows. and Ak is the equivalent spring constant
of the combined bellows. If | Ka ARCs/|[(a + Bk, (RCs + 1)]| = 1.,which is usually the
case. the transfer function can be simplified to

F.(s) _ 1 ‘h — bk, -
ﬁs) = K, 1 + T where &, oA - T; RC

[Obtairing Pneumatic Proportional-Plus-Integral-Plus-Derivative Control Action]

A combination of the pneumatic controllers shown in Figures 4—14(a) and
4—15(a) vields a proportional-plus-integral-plus-derivative controller. or a PIDD con-
troller. Figure 4—16(a) shows a schematic diagram of such a controller. Figure 4—16(b)
shows a block diagram of this controller under the assumption of small variations in the
variables.

. p—— E[ X(s) P.(s)
e K
a+b

Figure 4-16 (R; == Ry
(a) Pneumatic
proportional-plus-
integral-plus-
derivative controller:
(b) block diagram of
the controller.

(b) a A

The transfer function of this controller is
Fe(s) bK Ala+b) By defining 7, = R,C T, = R,C
E(S) — 7 Ka A (ch — RdC)S ) = £ £ £ o o
1+ @ + Bk, (R,Cs + 1)(R,Cs + 1)
and noting that under normal operation |KaA(f.?”, — Td)s/[ (a + b)kS(TdS -+ 1 )(ZT,.S‘ —+ 1 )]| =1

and 7; = T,. we obtain P.(s) . bk, (Td.S‘ 4+ 1)(7;_5 4+ 1) . bk, TuT;s> + Ts + 1
E(s) = aA (7; — T,)s T aA T;s
£els) a1 Ay s where K, = 2K (4—24)
E(s) » Tis P P aA

Equation (4—24) indicates that the controller shown in Figure 4—-16(a) is a proportional-
plus-integral-plus-derivative controller or a PIID controller.
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(d—4a4a HYDRAJLIC SYSTEMS]

Except for low-pressure pneumatic controllers. compressed air has seldom been used for
the continuous control of the motion of dewvices having significant mass under external
load forces. For such a case. hyvdraulic controllers are generally preferred.

[Hydraulic Systems] The widespread use of hydraulic circuitry in machine tool
applications., aircraft control systems. and similar operations occurs because of such fac-
tors as positiveness., accuracy. flexibility, high horsepower-to-weight ratio. fast starting.
stopping. and reversal with smoothness and precision. and simplicity of operations.

The operating pressure in hyvdraulic systems is somewhere between 145 and S000 1b/in.>
(between 1 and 35 MPa). In some special applications. the operating pressure may go up
to 10.000 1lb/in.” (70 MPa). For the same power requirement. the weight and size of
the hyvdraulic unit can be made smaller by increasing the supply pressure. With high-
pressure hvdraulic systems. very large force can be obtained. Rapid-acting. accurate
positioning of heavy loads is possible with hydraulic systems. A combination of elec-
tronic and hvdraulic systems is widely used because it combines the advantages of both
electronic control and hydraulic power.

|[Advantages and Disadvantages of Hydraulic Systems.| There are certain
advantages and disadvantages in using hvdraulic syvstems rather than other svstems.
Some of the advantages are the following:
1. Hvdraulic fluid acts as a lubricant. in addition to carrving away heat generated in
the system to a convenient heat exchanger.
2. Comparatively small-sized hydraulic actuators can develop large forces or torques.
3. Hydraulic actuators have a higher speed of response with fast starts, stops, and
speed reversals.
4. Hwvdraulic actuators can be operated under continuous. intermittent. reversing.
and stalled conditions without damage.
5. Awvailability of both linear and rotary actuators gives flexibility in design.
6. Because of low leakages in hyvdraulic actuators, speed drop when loads are applied

is small.
Omn the other hand. several disadvantages tend to limit their use.

1. Hyvdraulic power is not readily available compared to electric power.

2. Cost of a hyvdraulic system may be higher than that of a comparable electrical
svstem performing a similar function.

3. Fire and explosion hazards exist unless fire-resistant fluids are used.

4. Because it 1s difficult to maintain a hyvdraulic system that is free from leaks. the
system tends to be messy.

5. Contaminated o©il mayv cause failure in proper functioning of hvdraulic system.

6. As aresult of the nonlinear and other complex characteristics involved. the design
of sophisticated hvdraulic syvstems is guite involved.

7. Hvdraulic circuits have generally poor damping characteristics. If a hyvdraulic circuit
is not designed properly. some unstable phenomena may occur or disappear. de-
rending on the operating condition.

[Comments.] Particular attention is necessary to ensure that the hyvdraulic system
is stable and satisfactory under all operating conditions. Since the viscosity of hvdraulic
fluid can greatly affect damping and friction effects of the hvdraulic circuits., stability
tests must be carried out at the highest possible operating temperature.

Note that most hvdraulic systems are nonlinear. Sometimes. howewver. it is possible
to linearize nonlinear systems so as to reduce their complexity and permit solutions that
are sufficiently accurate for most purposes. A useful linearization technigue for dealing
with nmnonlinear systems was presented in Section 2—7.

|[Hydraulic Servo System.| Figure 4—17(a) shows a hyvdraulic servomotor. It is
essentially a pilot-valve-controlled hvdraulic power amplifier and actuator. The pilot
valve is a balanced wvalve. in the sense that the pressure forces acting on it are all balanced.
A very large power output can be controlled by a pilot valve. which can be positioned
with very little power.

In practice. the ports shown in Figure 4—17(a) are often made wider than the corre-
sponding valves. In such a case. there is alwavs leakage through the valves. Such leak-

L w’s ¢P° . 7] .

+ X - —
2 > X
) * (b)
Figure 4-17 J \
(a) Hydraulic servo / 1 | \
1 |
system: (b) enlarged D i : >
diagram of the valve Load - - . I - -
- I
orifice area. ': !
1 b J

m
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L
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age improves both the sensitivity and the linearity of the hvdraulic servomotor. In the
following analysis we shall make the assumption that the ports are made wider than
the valves—that is. thie valves are underlapped. [Note that sometimes a dither signal. a
high-frequency signal of wvery small amplitude (with respect to the maximum
displacement of the valve). is superimposad on the motion of the pilot valve. This also
improves the sensitivity and linearityv. In this case also there is leakage through the valve.]

We shall apply the linearization technique presented in Section 2—7 to obtain a lin-
carized mathematical model of the hydraulic servomotor. We assume that the valve is
underlapped and svmmetrical and admits hvdraulic fluid under high pressure into a
power cvlinder that contains a large piston.so that a large hvdraulic force is established
to mowve a load.

In Figure 4—17{b) we have an enlarged diagram of the valve orifice area. Let us
define the valve orifice areas of ports 1.2.2.4as .A4,. .A,.. A5, .A,. respectively. Also.define
the flow rates through ports 1, 2. 3. 4 as . 2. =2 4. Tespectively. WNote that, since the
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valve is symmetrical. .4, — A5 and A5, — A, Asssuming the displacement x to be small.
we obtain A, — A, — Kk ”50 + x A, — A, — k( 2 — x) where k is a constant.

Furthermore. we shall assume that the return pressure p, in the return line is small
and thus can be neglected. Then. referring to Figure 4—17(a). flow rates through wvalve

orifices are

@ — erAZE (P — P — v = (R x)
Qz:CZszzﬁg(ps—pz):czm(fo)
q3:C1A3\/2‘Tg(Pz_Po):C1\m(7—i—x) :cl\@(%+x)
ga — C2A4\/_2,}<,g (P1 - Po) = sz(%a—x) :Cz\ﬁ(% — x)

where €, = c; ANV2g,/vand C, = cokNV2eg,/yv.and yis the specific weight and is given by
» = pg.where p is mass density and g is the acceleration of gravity. The flow rate g to
the left-hand side of the power piston is
X X -
G = — g1 = P — P (32 x) - Vv (2 x) (4-25)
The flow rate from the right-hand side of the power piston to the drain is the same as
this and is given bw — X —( x
a & ’q:qgfqzzcl\/Pz(zoer)*CZ\/PS*PZ(Z'*x)
In the present analyvsis we assume that the fluid is incompressible. Since the valve is
svmmetrical. we have g, = g5 and g = g,- By equating g, and 5. we obtain
Ps — P1 = P> or Ps =— P17 P2
If we define the pressure difference across the power piston as Ap or Ap — p, — p>
Ps + Ap Ps — A
then P = Sf’ Pe = Sfp
For the svimmetrical valve shown in Figure 4—17(a). the pressure in each side of the
power piston is (1,/2)p; when no load is applied. or Ap = 0. As the spool valve is dis-

prlaced. the pressure in one line increases as the pressure in the other line decreases bywy

the same amount.
In terms of p, and A p, we can rewrite the flow rate g given by Equation (4—25) as

Ps — Ap qu+&px
g = g1 — ga = %foﬂ—x) = — x

Noting that the supply pressure p, is constant. the flow rate g can be written as a func-
tion of the valve displacement x and pressure difference A p, or

TPps — Ap X s + ANp X

Bv applving the linearization technique presented in Section 3—10 to this case. the lin-

earized equation about point x = X, Ap — Ap.g — g is
g — g = a(x — X)) + b(Ap — Ap) where g = [f(x. Ap) (4—-26)

g) — A + Ap

P ar \/ps Z . [ Ps r
ax x=x, Ap—Ap 2
ar [ <, (xo ,) > (xo 7)]

j 2 — [ 4 —+ — - — X = 0
OAPD |uxnpnp L2NVZ VP, — Ap \ 2 x 2NZ2 N p. F Ap \ 2

Coefficients a and H here are called valfve coefficierrrs. Equation (4—26) is a linearized
mathematical model of the spool valve near an operating point x — X, Ap — Ap.qg — -
The values of valve coefficients a and b vary with the operating point. Note that aj /aM p

is negative and so o is negative.

Since the normal operating point is the point where ¥ — O, Ap — 0, — 0O, near the
normal operating point Equation (4—26) becomes
g = K,x — K> Ap 4—27)
where K, — (€, + <) VEE — o K = (€, + C5)———=2 — = 0O
1 1 - AN N s
Equation (4—27) is a linearized mathematical model of the spool valve near the origin
(x = 0. Ap = 0,.g = 0.) Note that the region near the origin is most important in this

kind of system. because the system operation usually occurs near this point.

Figure 4—18 shows this linearized relationship among g. x, and A FP. The straight lines
shown are the characteristic curves of the linearized hydraulic servomotor. This family
of curves consists of equidistant parallel straight lines, parametrized bwv x.

In the present analysis we assume that the load reactive forces are small, so that the
leakage flow rate and oil compressibility can be ignored.

Referring to Figure 4—17(a)., we sece that the rate of flow of oil g times Jdr is equal to
the power-piston displacement 4y times the piston area A4 times the density of oil .
Thus. we obtain Ap dy = g dr
Notice that for a given flow rate g the larger the piston area A4 is. the lower will be the
velocity dy/de. Hence. if the piston area .4 is made smaller. the other variables re-
maining constant, the velocity dyv /dr will become higher. Also, an increased flow rate g
will cause an increased velocity of the power piston and will make the response time

shorter. Equation (4—27) can now be written as AP — % (le — Ap dr )
2
The force developed bwv the power piston is equal to the pressure difference AP times
the piston area A or Force developed by the power piston —A ,AJD:I<4 K, x—Ap d;
2
o= 2 o M
= \
x = O
o o= — g
o= — 2y
Figure <4—15 o PN
CTharacteristic curves
o thhe limearized
hydraulic
ServOoOIrmMoOtor. \
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For a given maximum force. if the pressure difference is sufficiently high. the piston
arca. or the volume of ©oil in the cylinder. can be made small. Consequently. to minimize
the weight of the controller, we must make the supply pressure sufficiently high.
Avssume that the power piston moves a load consisting of a mass and wviscous friction.
Then the force developed by the power piston is applied to the load mass and friction.
and we obtain =
my - by — A (Kix — Apy)  or my + (6 + F22)y — 55 (4—2%)
where rr is the mass of the load and & is the viscous-friction coefficient.
Acssuming that the pilot-valve displacement x is the input and the power-piston
displacement w is the output., we find that the transfer function for the hvdraulic servo-

motor is. from Eqguation (4—28).

Y (s5) 1 _ Vi
2 K b K A s( s +— 1) (4—29)
X () s e )5 -+
AR 1 AN, =
where N = and 7 =
bR, AK, + Ap/ K, b K A=

From Equation (4—29) we sece that this transfer function is of the second order. If the ratio
sz/(sz —+ Azp) is mnegligibly small or the time constant 7T is megligible, the transfer
function » (5) /X (s5) can be simplified to give Y(s) _ K

It is moted that a more detailed analyvsis shows that if oil leakage. compressibilitwy
(including the effects of dissolved air). expansion of pipelines, and the like are taken
into consideration. the transfer function becomes Y (s) =

X ()  s(Ths + 1 )W(Tms + 1)
where 7} and 75 are time constants. As a matter of fact, these time constants depend on
the volume of oil in the operating circuit. The smaller the volume. the stmaller the time
constants.

[(Hydraulic Integral Controller.] The hydraulic servomotor shown in Figure 4—19 is
a pilot-valve-controlled hvdraulic power amplifier and actuator. Similar to the hvdraulic
servo system shown in Figure 4—17. for negligibly small load mass the servomotor shown
in Figure 4—19 acts as an integrator or an integral controller. Such a servomotor consti-
tutes the basis of the hvdraulic control circuit.

In the hyvdraulic servomotor shown in Figure 4—19, the pilot valve (a four-way wvalwve)
has two lands on the spool. If the width of the land is smaller than the port in the valve
sleeve, the valve is said to be wwnderfapped. Overiapped valves have a land width greater than
the port width. A zero-lapped valve has a land width that is identical to the port width. (If
the pilot valve is a zero-lapped valve. analyvses of hvdraulic servomotors become simpler.)

In the present analvsis. we assume that hydraulic fluid is incompressible and that the
inertia force of the power piston and load is negligible compared to the hvdraulic force
at the power piston. We also assume that the pilot valve is a zero-lapped valve., and the
oil flow rate is proportional to the pilot valve displacement.

O peration of this hvdraulic servomotor is as follows. If input x moves the pilot valve
to the right, port Il is uncovered. and so high-pressure oil enters the right-hand side of
the power piston. Since port I is connected to the drain port, the oil in the left-hand side
of the power piston is returned to the drain. The oil flowing into the power cylinder is
at high pressure: the oil flowing out from the power cylinder into the drain is at low
pressure. The resulting difference in pressure on both sides of the power piston will
cause it to move to the left.

Note that the rate of flow of 0il g (kg/sec) times dr (sec) is equal to the power-piston
displacement &y (m) times the piston area -4 (m?) times the density of oil p (kg/mMm>).

Therefore. A dyv = g dr (4—30)
Because of the assumption that the oil flow rate g is proportional to the pilot-valve
displacement x. we hawve g = K, x Iy (4—31)
where K, is a positive constant. From (4—30) and (4—31) we obtain A (;" = K, x

Oil under pressure f +

L 1l |f|_ Pilot valve

Xx (&,

Figure 4—19
Hwvdraulic
servomotor.

Port 1 Port 11

Power cylinder

The Laplace transform of this last equation. assuming a zero initial condition. gives

¥ (s5) K <
ApsY (s) = K, X (s5) or X (s) — Apls - =
where K — K, /(.Ap). Thus the hyvdraulic servomotor shown in Figure 419 acts as an

integral controller.

[Hydraulic Proportional Controller. ] It has been shown that the servomotor in
Figure 4—19 acts as an integral controller. This servomotor can be modified to a pro-
prortional controller by means of a feedback link. Consider the hvdraulic controller
shown in Figure 4—20(a). The left-hand side of the pilot valve is joined to the left-hand
side of the power piston by a link A BC . This link is a floating link rather than one mowv-
ing about a fixed pivot.

The controller here operates in the following wayw. If input e mowves the pilot valve to
the right. port II will be uncovered and high-pressure oil will flow through port Il into
the right-hand side of the power piston and force this piston to the left. The power pis-
ton. in movwving to the left. will carrv the feedback link A BC with it. thereby mowving the
pilot valve to the left. This action continues until the pilot piston again covers ports I and
IT. A block diagram of the system can be dravwn as in Figure 4-—20(b). The transfer func-
tion between Y (s5) and E(s5) is given by

Y(s) __ K bSCa+b) s
FE(s) 1 + K a/ s(a+b)
Noting that under the normal operating conditions we have |Ka/[s(a + B)]| = 1, this

last equation can be simplified to Y(s) _ b __ K
F(s) a P
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Figure 4—20 (a) Servomotor that acts
v = as a proportional controller: (b)) block
- P diagram of the servormaotor.

0 = o

The transfer function between y and e becomes a constant. Thus, the hyvdraulic controller
shown in Figure 4—20(a) acts as a proportional controller. the gain of which is K, . This gain
can be adjusted by effectively changing the lever ratio b /a. (The adjusting mechanism is
not shown in the diagram.)

We have thus seen that the addition of a feedback link will cause the hvdraulic
servomotor to act as a proportional controller.

[Dashpots-] The dashpot (also called a damper) shown in Figure 4—21(a) acts as a
differentiating element. Suppose that we introduce a step displacement to the piston po-
sition y. Then the displacement z becomes egqual to ¥y momentarily. Because of the spring
force. howewver. the oil will flow through the resistance K and the cvlinder will come back
to the original position. The curves y versus 7 and z versus r are shown in Figure 4 21(b).

I et us derive the transfer function between the displacement z and displacement y.
Define the pressures existing on the right and left sides of the piston as 2 (1b/in.?) and
P (1bg/in.?), respectively. Suppose that the inertia force involved is negligible. Then the
force acting on the piston must balance the spring force. Thus

A(P, — P) = kz where .4 = piston area.in.? &k = spring constant. lbg/in.
The flow rate g is given by g — w where g =— flow rate through the
restriction. lb/sec R =

resistance to flow at the restriction. Ibysec/in.?-1b
Since the flow through the restriction during 7 seconds must equal the change in the
mass of oil to the left of the piston during the same or seconds. we obtain

g dr = Ap(dy — dz)
where p = density. 1b/in.3. (We assume that the fluid is incompressible or p constant.)
This last equation can be rewritten as dy _ dz _ g _ P — P Kz
dr dr Ao R Ap R Ap
— R »

— 1L

| % 7 ¥(s) Z(s)
= = ; — 2o .
b) 7= £
—I A K ¢ (c) L ?15 —J s
. [ » - = ° 2
Figure 4—21

(a) Dashpot: (b) step change in yv and the corresponding change in z plotted versus r;
(c) block diagram of the dashpot.

dyv  dz= -+ K=z
or Ar dr R Ao
Taking the Laplace transforms of both sides of this last egquation. assuming zero initial
conditions., we obtain sY (s = s7(s —+ s (s
Tt fer functi £ thi o h (b) R, T =(s) _ >
he transfer function of this system thus becomes Y (s) § T RAp

ILet us define R.Ap/k = T . (Note that R A%p/k has the dimension of time.) Then

Z(s) __ Ts _ 1

Y (s) T s + 1 1+ I.7Ts

Clearly. the dashpot is a differentiating element. Figure 4—21(c) shows a block diagram
representation for this syvstem.

(O-btaining Hydraulic Proportional-Plus-Integral Control Action.] Figure 4—22(a)
shows a schematic diagram of a hyvdraulic proportional-plus-integral controller. A block
diagram of this controller is shown in Figure 4-22(b). The transfer function ¥ (s) /E(s)
is given by Y(is) b /S s(a+b)

E(s) 14fKaca+b)jii(Ts+1)]

=) \;
\ il
(a) C‘, under ¢ # *
pressure . : ;
. ¥ I—l I—l E(s) B X(s) = ¥(s)
- A \ a + b &

\ Z(5) .
Spring b Are'] =4 ®> L o i Iz T"T; 1
constant = & f’ll .
3 # . Figure 4—22

o) (a) Schematic diagram of a hydraulic
—~= / proportional-plus-integral controller:
Density of oil = p ReS|;-.t'1rlce — R (b) block diagram of the controller.
>
In such a controller. under normal operation |Ka7 /[ (a + BY(Ts +— 1) ]| = 1. with the
result that ¥ (s) ) 1 b R A%
Ecsy Kol + 75 where K, = a- 7, r =

K
Thus the controller shown in Figure 4—22(a) is a proportional-plus-integral controller
(PI controller).

(Obtaining Hydraulic Proportional-Plus-Derivative Control Action. | Figure 4-23(a)
shows a schematic diagram of a hyvdraulic proportional-plus-derivative controller. The
cvlinders are fixed in space and the pistons can move. For this system. notice that

K(y — 2) = A(P — P,) q =" qdr = pAdz
. A o RAAp d= Z(s5) 1
Hence v z g aR — =+ —f g or Y(s) Ts + 1
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\ (a)
:Q I | I I E(s) S X(s) K ¥Yis)
x ¥ —5 —— ﬁ*% ~
™,

; L P Z(s) 1
\ r by a + b Ts + 1
b p Figure 4—23
/ L % (a) Schematic diagram of a hvdraulic
< |
1 I

= » i - —d ivative c -
l AAAA proportional-plus-derivative controller:

=

Density (b) block diagram of the controller.

of oil — o “7 T Area — A

where T = RAp

A block diagram for this syvstem is shown in Figure 4—23(b). From the block diagram the

transfer function Y (s) /F(s) can be obtained as
Y (s bi/sra+b)

E(E;’ T I fa (eSS I T s+ 1))
Under normal operation we have |laK /[ (a + B)s(Ts + 1)]|| = 1. Hence
YCS) k(1 + Ts) : _ b _ R4%p
E(s) P where K, — &a- T = —
Thus the controller shown in Figure 4—23(a) is a proportional-plus-derivative controller
(P> controller).

[Obtaining Hydraulic Proportional-Plus-Integral-Plus-Derivative Control Action.]
Figure 424 shows a schematic diagram of a hvdraulic proportional-plus-integral-plus-
derivative controller. It is a combination of the proportional-plus-integral controller
and proportional-plus derivative controller.

If the two dashpots are identical except the piston shafts. the transfer function

Z(5) /Y (5) can be obtained as follows: Z(s) _ 7,5
Y(s) @ T375.52 + (7, + 275)s + 1
(For the derivation of this transfer function. refer to Problem A—4—9.)
= & 1
&) ——
» i Y 1 . Es Xs Vs
y J L Figure 4-25 -'»]~ b ¥ K J
|_| |_| Block diagram for | a+b Tl i
Figure 4-24 o | ’ H agre

Schematic diagram the system shown in A T
of a hydraulic ' : 19 R .y
proportional-plus- b R R Fl_gure 2 a+h BN I #4 (T)+2T)s + 1
integral-plus- | /
derivative i k1 L I I k,z l ¥
controller. <

Ared’= A 17777777; 1 = ]

A block diagram for this svstem is shown in Figure 4—25. The transfer function

Y (5)/E(s5s) can be obtained as
Y(s) __ b s
E(s) a + b 1 +fa(a+b) ] </ s]tT s/ T Tos2+ (T, +27T5)s + 1+
UUnder normal circumstances we design the system such that
a K s — 1 then Y(5) _ b TW7Tos® + (T, + 27%)s + 1
a + b s T T.52 + (7, + 27L)s + 1 FF(s) P T, s
Y (s K; . _ b T, + 27 b 1 B
%:Kpﬁf K + K, 5 where Kp = E%lz’ K,— = Ef’ Kd = ETZ
Thus, the controller shown in Figure 4—24 is a proportional-plus-integral-plus-derivative

controller (PIDD controller).

M—5 THERMAIL SYSTEMS]
Thermal systems are those that involve the transfer of heat from one substance to

another. Thermal systems may be analyvzed in terms of resistance and capacitance.
although the thermal capacitance and thermal resistance mayv not be represented
accurately as lumped parameters, since they are usually distributed throughout the sub-
stance. For precise analwvsis. distributed-parameter models must be used. Here, howewver,
to simplify the analvsis we shall assume that a thermal system can be represented by a
lumped-parameter model. that substances that are characterized by resistance to heat
flow have negligible heat capacitance. and that substances that are characterized by heat
capacitance have negligible resistance to heat flow.

There are three different ways heat can flow from one substance to another: con-
duction, convection. and radiation. Here we consider only conduction and convection.
(Radiation heat transfer is appreciable only if the temperature of the emitter is very
high compared to that of the receiver. Most thermal processes in process control systems
do not involve radiation heat transfer.)

For conduction or convection heat transfer. g — K A8 where
g — heat flow rate. kcal/sec Af = temp difference. °C K =coefficient. kcal/sec”C
The coefficient K is given bw K:% . for conduction K=H A. for convection

where £ = thermal conductivity, kcal,/m sec “C A = area normal to heat flow, m?>

A X —=— thickness of conductor. m H — convection coefficient. kcal/m~* sec °C

{(Thermal System. Consider the system shown in Figure 4-26(a). It is assumed
that the tank is insulated to eliminate heat loss to the surrounding air. It is also assumed
that there is no heat storage in the insulation and that the liguid in the tank is perfectly
mixed so that it is at a uniform temperature. Thus. a single temperature is used to describe
the temperature of the liquid in the tank and of the outflowing liguid.

Let us define @&,; = steady-state temperature of inflowing liquid. °C
A, = steady-state temp of outflowing liguid, °C R—=thermal resistance. “C sec/kcal
& = steadyv-state liguid flow rate. kg/sec M=mass of liquid in tank. kg
¢ = specific heat of liquid. kcal/kg “C < = thermal capacitance. kcal /~C
H = steady-state heat input rate. kcal/sec
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Acssume that the temperature of the inflowing liquid is kept constant and that the heat
input rate to the system (heat supplied by the heater) is suddenly changed from ~ to
H + R, where A; represents a small change in the heat input rate. The heat outflow rate
will then change gradually from A to A —+ /A_,. The temperature of the outflowing liq-
uid will also be changed from &, to &, + 6#. For this case. f,, €. and R are obtained.

respectively. as _ _ - o __ 1
P 3 h, = Gco C = Mc R 7, o
The heat-balance equation for this system is Ccdeo = (hk; — h,)dr
=
Figure 426 = &, ()
(a) T'herma_l system: 1|qu1d () &)
(b) block diagram of [—]e‘]tel R . 1
the system. Cold y RCs
liquid Mixer
—_— (b)
or [ ‘:;? = h,;, — Ff, which may be rewritten as RC ﬁ? + 8 = R,

Note that the time constant of the system is equal to RC or M /G seconds. The transfer

fg;'l(ction relating 6 and #A; is given by
(5 ~ - . - : < A
Hi(E)l — == where @(s) Fl[e(r)]| and H,(s) Flha.Ce)].

In practice. the temperature of the inflowing liguid mavw fluctuate and may act as a
load disturbance. (If a constant outflow temperature is desired., an automatic controller
may be installed to adjust the heat inflow rate to compensate for the fluctuations in the
temperature of the inflowing liquid.) If the temperature of the inflowing liguid is sud-
denly changed from &; to &, + 6; while the heat input rate /4 and the liquid flow rate
G are kept constant. then the heat outflow rate will be changed from & to /A& —+ A,.and
the temperature of the outflowing ligquid will be changed from &, to &, + &. The heat-

balance equation for this case is
C dOo =(Geh, —t,)de ©Or O % = (GcB;,— &, which may be rewritten RC dB —
The transfer function relating & and &; is given by

(s’ 1 — —

6,{((53 — Bt where @(s) — F[O(r)] and &,(s) — F[6,(r)].

If the present thermal svstem is subjected to changes in both the temperature of the
inflowing liquid and the heat input rate. while the liquid flow rate is kept constant, the
change # in the temperature of the outflowing liguid can be given bwv the following

equation: RC 4P 6 — 6, + Rn,
A block diagram corresponding to this case is shown in Figure 4—26(b). Notice that the
system involves two inputs.

l EXAMPLE PROBLEMS AND SOLATIONS |

In the liquid-level system of Figure 4—27 assume that the outflow rate @ m?/sec through the out-
flow walwve is related to the head H m by O = KVH = 001\VH

Assume also that when the inflow rate @, is 0.015 m?/sec the head stays constant. For r << O the
system is at steady state (Q; = 0.015 m3/sec). Attr = O the inflow valve is closed and so there is
no inflow for r = 0. Find the time necessary to empty the tank to half the original head. The

capacitance C of the tank is 2 m~.
When the head is stationary, the inflow rate equals the outflow rate. Thus head H, at

t = 0 is obtained from 0.015 = 0.01\H,_, or H, = 225m N
The equation for the system for¢ = 0is —C dH = Q dr or ‘i;?’ PR % — —0.00~vVH
Hence {’/—% — —0.005 dr
Assume that.atr = r,, H = 1.125 m. Integrating both sides of this last equation. we obtain
1.125 T 125
/ =H _ (—0.005) dr = —0.005¢, It follows that L NP, == 2225
Lo]

= —0.005¢, or t, = 1757
Thus, the head becomes half the original value (2.25 m) in 175.7 sec.

Figure 4—27 T
Liquid-level system. s
Capacitance l
—_— Q
A4 2

Consider the liquid-level system shown in Figure 4—28. In the system., @, and O, are steady-state
inflow rates and H; and H -, are steady-state heads. The quantities g1 . iz f11. Fio., g1 . and g, are con-
sidered small. Obtain a state-space representation for the system when A, and A, are the outputs

and g;; and g;> are the inputs.

The equations for the system are <y dRy = (g — ql)dr (4—32)
h, — h 24 £ h -
sz = g, (4-33) Cs dlii: = (g1 + Gz — Go)dt (4-—34) Rz e (4—35)
Elimination of g; from Equation (4—32) using Equation (4—33) results in

i 1 f1, — h e

G — o (an — et e
Eliminating g, and g, from Equation (4—34) by using Equations (4—-33) and (4-35) gives

dFis 1 ( h, — P, Fi = L .

— Tz S 437 &

s 3 R, + G , ( 37) Define state
variables x; and x; by x; = Ff; x> = A the input variables vy, and > by wu,— gy iz — Gi»
and the output variables yv; and y, by v, = Ay = ;3 Vo = A, = x,

Then Equations (4—36) and (4—-37) can be written as
- - N T i L9 o 1 . 1
Ay T 205 R, C, x5 1+ i riy Xy — R, Co X R, C, )xz T — >
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Tz%q F‘;%:H
2+ g O + gz

Figure 4—28 F= % - A
= Fr — ey F1 . _
Liquid-level Lo O + o = e O+ O g
sSystem.
Rl CZ

C] R2

In the form of the standard vector-maltrix representation. we have
1 1 which is the state equation. and

1
- = . — 0 -
o I T e R,C, I:xljl+ <, [u1:| »vw | _[1 o x4
Xo 1 - ( 1 . 1 ) Xo o 1 rio Vo o 1 Ao
RCo RiC> Ry Co = which is the output equation.

A—4—-3.
The value of the gas constant for any gas may be determined from accurate experimental obser-

vations of simultaneous values of p, v, and T'.
Obtain the gas constant R,; for air. Note that at 32°F and 14.7 psia the specific volume of air

is 12.39 ft* /1b. Then obtain the capacitance of a 20-t® pressure vessel that contains air at 160°F. As-
sume that the expansion process is isothermal.

o pv 147 X 144 =< 1239 __ _
Ry = = = 360 = 35 = 53.3 It-1b/1b°R
Referring to Equation (4—12). the cagacitance of a 20-ft® pressure vessel is
c =X = = — 6.05 < 10+ b
nR.e T 1 = 53.3 =< 620 . Ib./ ft2
Note that in terms of ST units, R, is given by R,;, = 287 N-m/kg K

A—4—4.
In the pneumatic pressure system of Figure 4—29(a). assume that. for ¢ << 0. the system is at steady

state and that the pressure of the entire system is P. Also. assume that the two bellows are identi-
cal. Atr = 0O, the input pressure is changed from P to P + p;. Then the pressures in bellows 1 and
2 will change from P to P + p; and from P to P + p,, respectively. The capacity (volume) of each
bellows is 5 > 107* m?, and the operating-pressure difference A p (difference between p; and p, or
difference between p; and p,) is between —0.5 < 10° N/m?” and 0.5 < 10° N/m?. The corresponding
mass flow rates (kg/sec) through the valves are shown in Figure 4-29(b). Assume that the bellows
expand or contract linearly with the air pressures applied to them. that the equivalent spring con-
stant of the bellows system is &k = 1 > 10° N/m. and that each bellows has area A = 15 > 10 *m-.

X Bellows 2 Ap(N/m?) § Valve 2

Bellows 1
-

Figure 429 (b) 0.5 < 105 }F——
(a) Pneumatic Valve 1
pressure system: g(kg/sec)
(b) pressure- WValve 1 C = 10>
difference-versus-

> 103

mass-flow-rate
curves. |

(a)

Defining the displacement of the midpoint of the rod that connects two bellows as x, find the
transfer function X (s)/Fi(s). Assume that the expansion process is isothermal and that the
temperature of the entire system stays at 30°C. Assume also that the polytropic exponent s is 1.
Referring to Section 4-3. transfer function £ (s)/F:(s) can be obtained as
%E;)): R, C; =1 (4—38) Similarly. transfer function P (s)/Fi(s) is %Eig= chi e (4—-39)
The force acting on bellows 1 in the x direction is A(P + p,), and the force acting on bellows 2
in the negative x direction is A(P + pz). The resultant force balances with kx, the equivalent

spring force of the corrugated sides of the bellows.

A(py, — py) = kx or A[P(s) — B(s)] = kX (5) (4—-40)
Referring to Equations (14—38) and (4—139) we see tlflt R,Cs — R,Cs -
Ei(E) — Rl — ( R 1 Iy F 1)3’&'(5) = (R, Cs + 1)(&,Cs + 1) (%)

Byv substituting this last equation into Equation (4-40) and rewriting. the transfer function
X (5)/P(s) is obtained as X(s) A (R.C — R,C)s (4-41)
Fi(s) k (R, Cs + 1)(R,Cs + 1)

The numerical values of average resistances R, and R, are 5
d A s N 2 dAp 05 x 10° N/m
r=2 2P _0S X104 s 00 = a5 x 105 0333100 o e
depy 3 x 10° kg/secc > 3 g
The numerical value of capacitance C of each bellows is
c=—Y = el ) _ 575 % 10° 5 _
nRk,; T 1 x 287 < (273 + 30) o N/m?

where R,;, = 287 N-m/kg K. (Sece Problem A—4-3.) Consequently.
R,C= 0.167x10'°x 5.75x10°=9.60 sec R,C= 0.333x10'°x 5.75x107°=19.2 sec

Byv substituting the numerical values for A, k. R;C. and R,C into Equation (4—41). we obtain
X(s) _ 1.44 < 107 7s
Fi(s) (9.65 + 1)(19.2s + 1)
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Draw a block diagram of the pneumatic controller shown in Figure 4-30. Then derive the transfer
function of this controller. Assume that R; << R;. Assume also that the two bellows are identical.
If the resistance R, is removed (replaced by the line-sized tubing). what control action do we get?
If the resistance R; is removed (replaced by the line-sized tubing). what control action do we get?
Let us assume that when e = O the nozzle—flapper distance is equal to X and the con-
trol pressure is equal to P_.. In the present analysis. we shall assume small deviations from the
respective reference values as follows:
e =small error signal x =small change in [lapper distance pP.=small change in control pressure

1 = small pressure change in bellows I due to small change in the control pressure
Pn = small pressure change in bellows Il due to small change in the control pressure
vy = small displacement at the lower end of the flapper

In this controller. p. is transmitted to bellows I through the resistance R,. Similarly. p,. is trans-
mitted to bellows II through the series of resistances R, and R;. The relationship between p; and p_is

P(s) 1 - 1
P(s) RyCs+ 1 Tys + 1
where T, = R,C = derivative time. Similarly, p;; and p; are related by the transfer function
Pu(s) = 1 — = 1 where T; = R,C = integral time.
Pi(s) R,Cs + 1 T;s + 1 -
The force-balance equation for the two bellows is (pl — p”)A = kv

where k; is the stiffness of the two connected bellows and A is the cross-sectional area of the
bellows. The relationship among the variables e, x,and yvis x = = T i f_ i
The relationship between p,. and x is p. = Kx (K = 0)

Figure 4—30
Schematic diagram
of a pneumatic

controller.

£

From the equations just derived. a block diagram of the controller can be drawn. as shown in
Figure 4—-31(a). Simplification of this block diagram results in Figure 4-31(b).

The transfer function between F.(s) and E(/.sgbi/s( b)
A _ a—+
E(s) 1 +KaAT;s/[(a + PYk(T;s +1)(T,s+1)]

For a practical controller, under normal operation |KaAT,;s/|(a + PYk(T;s + 1 Tys + 1)]| is
very much greater than unity and 7; = 7T,;. Therefore, the transfer function can be simplified as

follows: P(s) . bk(Tis + 1) Tys + 1) bk, (T} + Ty 1,
E(s) = aAT.s T aA ol T T s as
. 1
= Kp( 1 + s + Tds) where K, = g4
Thus the controller shown in Figure 4—-30 is a proportional-plus-integral-plus-derivative one.
It the resistance R; is removed., or K,; = 0, the action becomes that of a proportional-plus-

integral controller.

E(s) b X(s) = Pe(s)
a+ b T E(s) b X(s) P.(s)
——] p—( K
a A Pi(s) 1 a+ b —
(a) - 2 -
a+ b K — Tys+1 o ad T, s
PusH 1 @+ B kTis + 1) (Tas + 1)
T;:s+ 1
Figure 4-31 (a) Block diagram of the pneumatic controller shown in Figure 4-30: (b) simplified block diagram.
Xo Xo by gy PR
Figure 4-32 2 ¢ 2 (a) ®) 2 ; 2
(a) Overlapped X g IV - 1|:|
spool valve:
b) underlapped | S | I—I
(b) app 1T L 1 T 1 T
spool valve. High pressure Low pressure High pressure Low pressure
If the resistance R; is removed, or R; = 0, the action becomes that of a narrow-band propor-

tional, or two-position, controller. (Note that the actions of two feedback bellows cancel each
other, and there is no feedback.)

Acctual spool valves are either overlapped or underlapped because of manufacturing tolerances.
Consider the overlapped and underlapped spool valves shown in Figures 4—32(a) and (b). Sketch
curves relating the uncovered port area A versus displacement x.
For the overlapped valve, a dead zone exists between —3 xgand L xg, 0or —3 x5 =< x << 3 x,.
The curve for uncovered port area A versus displacement x is shown in Figure 4—33(a). Such an
overlapped valve is unfit as a control valve.

For the underlapped valve. the curve for port area .A versus displacement x is shown in
Figure 4—33(b). The effective curve for the underlapped region has a higher slope. meaning a
higher sensitivity. Valves used for controls are usually underlapped.
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A—d4 7.

Figure 4—34 shows a hyvdraulic jet-pipe controller. Hydraulic fluid is ejected from the jet pipe. If
the jet pipe is shifted to the right from the neutral position. the power piston moves to the left.
and wvice versa. The jet-pipe valve is not used as much as the flapper valve because of large null
flow., slower response, and rather unpredictable characteristics. I'ts main advantage lies in its
insensitivity to dirty fluids.

Suppose that the power piston is connected to a light load so that the inertia force of the load
element is negligible compared to the hvdraulic force developed by the power piston. What tyvpe
of control action does this controller produce?

Define the displacement of the jet nozzle from the neutral position as x and the
displacement of the power piston as y. If the jet nozzle is moved to the right by a small displace-

v —~ v
Figure 4-33 () 44 (b) A} o [ —
(a) Uncovered-port-area-A-versus Effectiy Area exposed
displacement-x curve for the e tohigh pressure|

area / / “ Figure 4-34
overlapped valve: - »  |Hydraulic
X \/ X jet-pipe
(b) uncovered- port-area- 5] Yo controller. x
A-versus- displacement-x curve Yo -~ 5
for the underlapped valve. 2 —
|Area exposed to _
low pressure e

ment x. the oil flows to the right side of the power piston. and the oil in the left side of the power
piston is returned to the drain. The oil flowing into the power cylinder is at high pressure: the oil
flowing out from the power cylinder into the drain is at low pressure. The resulting pressure
difference causes the power piston to move to the left.

For a small jet-nozzle displacement x. the flow rate g to the power cvlinder is proportional to
x:thatis. g = K;x For the power cylinder. Apdy = g dr where A is the power-piston area

and p is the density of oil. Hence (:;/: = AL = g' x = Kx
I3 I3
where K = K,/(Ap) = constant. The transfer function ¥ (s) /X (s) is thus Y (5) _ TK
The controller produces the integral control action. sl o
k
O a p
-~ o B 1 —
A~ E(s) Y(s)
v te | Figured-36 | @2 | LS
L ET N ay+a N
Fraure 435 \'_-"II T i e Block diagram for
Speed control I m[  pressure the speed control a |45 g
system — 1Ty @ . . ~
3 . ! system shown in Figure 4-35. a) +a bs +k
Y
Engine
e ——— |

LA—4—S. |
Explain the operation of the speed control system shown in Figure 4—-35.
If the engine speed increases. the sleeve of the fly-ball governor moves upward. This
movement acts as the input to the hyvdraulic controller. A positive error signal (upward motion of
the sleeve) causes the power piston to move downward. reduces the fuel-valve opening. and
decreases the engine speed. A block diagram for the system is shown in Figure 4—36.
From the block diagram the transfer function Y (s5)/E(s) can be obtained as

Y(s) _ sy K/s If the following condition applies.
E(s) a, + a; 1—+[fa/(a+az)][bs/(bs+Kk)]J[K/s]
a; bs K

a, + a, bs + kK s

= 1 the transfer function Y (s) /E(s5) becomes
Y(S)_ a- a1+a2bs+k=ﬁ1+k)

E(s) = ay + as ay bs ay bs
The speed controller has proportional-plus-integral control action.

Derive the transfer function Z(s) /¥ (s) of the hydraulic system shown in Figure 4-37. Assume that
the two dashpots in the system are identical ones except the piston shafts.
In deriving the equations for the system. we assume that force F is applied at the right
end of the shaft causing displacement y. (All displacements y, w, and z are measured from re-
spective equilibrium positions when no force is applied at the right end of the shaft.) When force
F is applied. pressure P, becomes higher than pressure Pj, or £ = Pj. Similarly. P = P5.

For the force balance. we have the following equation:

kx(y— w) = AP, — P}) + A(P, — P3) (4—42) Since kiz = A(PR — P%) (4-43)

and g, = @ we have Kkiz = ARqg, Also.ksince g, dr = A(dw — dz)p

we have g1 = A(w — Z)p L2 LE W = A+}§p‘ e

Define ARp = B. (B is the viscous-friction coefficient.) Then @ — 2 = gz (4-44)

Also. for right-hand-side dashpol we have g, dr = Ap dw Since g> = (P> — P5)/R. we oblain
w = ﬁzg = ﬂ%) or A(P, — P3) = Bw (4-45)

Substituting Equations (4—43) and (4—45) into (4—-42), we have koy — k2w = kz + Bw
Taking the Laplace transform of this last equation. assuming zero initial condition., we obtain
kY (5) = (ka + Bs)W(s) + k,Z(s) (4—46)
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Figure 4_—37 A1k Iﬁ #q] ﬁl ‘l‘qz s
Hydraulic P, I L - . I L e AAAA . et [
S}"Stem. —'17 - Pl I -"I? Pz P2 -'lTv -I?
Area = A . )
Taking the Laplace transform of Equation (4—44), assuming zero initial condition, we obtain

ws) = L5 B 706 (4-47)

Byv using Equation (4—47) to eliminate W (s) from Equation (4—46). we obtain
koY (s)=(ko+Bs )M Z(s)+k 1 Z(s5) fr(or)n which we obtain transfer function Z(s) /Y (s) to be
P k>s
Y(s) Bs? + (2k, + ky)s + k1kz/B
Multiplving B/(k kz) to both the numerator and denominator of this last equation. we get
Z(s) _ Bs/ky
Y(s) B2s2/k ko+(2B/k, +B/ky)s + 1
Define B/k, = T, B/k, = T5. Then the transfer function Z(s) /Y (5) becomes as follows:

gil - 15
Y (s) TWT,s> + (T, + 2T>)s + 1

Considering small deviations from steady-state operation. draw a block diagram of the air heat-
ing syvstem shown in Figure 4-38. Assume that the heat loss to the surroundings and the heat

C"lp"l(_lt"ll’lce of the metal parts of the heater are negligible.

I.et us define ~); = steady-state temperature of inlet air, °C

= ste‘]d\ -state temperature of outlet air, °C M = mass of air in the heating chamber, kg
G = mass flow rate of air through heating chamber. kg/sec ¢ = specific heat of air. kcal/kg “C
R = thermal resistance. “C sec/kcal A = steady-state heat input kcal/sec
C = thermal capacitance of air contained in the heating chamber = AMc. kcal/~C

ILet us assume that the heat input is suddenly changed from H to H + A& and the inlet air
temperature is suddenly changed from &; to &; + 8;. Then the outlet air temperature will be

changed from &, to &, + 0,.

The equation describing the system behavior is Cde, = [h + Ge(6;, — 8,)] dt
or 4% — h + Ge(o, — 0,) Noting that Gc — k&
we obtain € 4= _ 5, L (6, — 6,) or RC ‘:fr + 0, = R + 0,

Taking the Laplace transforms of both sides of this last eguation and substituting the initial

S = _ . . Fid 1 _
condition that &5(0) = 0., we obtain A, (s5) = s T T H(s) + P s 1 E(5)
The block diagram of the system corresponding to this equation is shown in Figure 4—39.
Figure 4—38 _ &, o, ) Oy(s) 1
MAir heating H Flgure 4-39 RCs + 1
system. T Block diagram of the
S o A YAV AV VY air heating system H(s) = O (s)
: ‘ Heater xr - . .
1 shown in Figure 438,  mpm— RGs =1
A—4-11.
Comnsider the thin. glass-wall. mercury thermometer system shown in Figure 4—40. Assume that the
thermometer is at a uniform temperature & (ambient temperature) and that at z = 0O it is

immersed in a bath of temperature & + 8,. where 6, is the bath temperature (which may be con-
stant or changing) measured from the ambient temperature . Define the instantaneous ther-
mometer temperature by & + 6. so that 8 is the change in the thermometer temperature satisfying
the condition that #(0) = 0. Obtain a mathematical model for the system. Also obtain an electri-
cal analog of the thermometer system.

A mathematical model for the system can be derived by considering heat balance as fol-
lows: The heat entering the thermometer during dr sec is g dr. where g is the heat flow rate to the

thermometer. This heat is stored in the thermal capacitance C of the thermometer, thereby rais-

ing its temperature by 6. Thus the heat-balance equation is C d8 = g dr (4—48)
/;T'hernﬁon]eter N
&+ o Figure 4-41 © W ©
Figure 4—40 [ - ] Electrical analog of
Thin. glass-wall, Bath the thermometer e; (@l e,
r @ .
mercury thermo- &+ o ~<1— | [system shown in
meter system. .
- Figure 4-40. o o
Since thermal resistance R may be written as R — d_({A—B) _ A8 _ _
. . A q (@ +6,)—(®+868) o6 —a6
heat flow rate g may be given, in terms of thermal resistance R.,as g = R = R
where @ + 6, is the bath temperature and & + 6 is the thermometer temperature. Hence, we
can rewrite Equation (4—48) as cd9 _ 6, — 6 or RC ?;? + 0 =0, (4-49)

dr R
Equation (4—-49) is a mathematical model of the thermometer system.
Referring to Equation (4-49), an electrical analog for the thermometer system can be written as

de, —
RC di T € = &

An electrical circuit represented by this last equation is shown in Figure 4—41.
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( PROBLEMS ]

B—4—1. Consider the conical water-tank system shown in 7]
Figure 4—42. The flow through the wvalwve is turbulent and is

related to the head H by

O = 0.005VH

where @ is the flow rate measured in m®/sec and / is in

meters.
Suppose that the head is 2 m at ¢ = 0. What will be the l
head at¢t = 60 sec? hi
Figure 4—42 Conical water-tank system.
) o ~ [B=4=3] For the pneumatic system shown in Figure 444,
Consider the liquid-level control system shown in

Figure 4-43. The controller is of the proportional type. The
set point of the controller is fixed.

Draw a block diagram of the system. assuming that
changes in the variables are small. Obtain the transfer func-
tion between the level of the second tank and the distur-
bance input g4 Obtain the steady-state error when the
disturbance ¢, is a unit-step function.

Proportional
controller

O+q;

Figure 4-43
Liquid-level control system.

B—4-4. | Figure 445 shows a pneumatic controller. The pneu-
matic relay has the characteristic that p. = K p,., where
K = 0. What kind of control action does this controller
produce? Derive the transfer function P.(s)/E(s).

assume that steady-state values of the air pressure and the
displacement of the bellows are P and X, respectively.
Assume also that the input pressure is changed from P to
P + p;, where p; is a small change in the input pressure. This
change will cause the displacement of the bellows to change
a small amount x. Assuming that the capacitance of the bel-
lows is C and the resistance of the valve is R, obtain the
transfer function relating x and p;.

— X +x

] C

P+p, .Z
—»-:|>TQ:7 Al

k A Y7
Figure 4-44 74" NN

Pneumatic \ p
system. \ £ FPo

[B=4-5] Consider the pneumatic controller shown in
Figure 4-46. Assuming that the pneumatic relay has the char-
acteristics that p. = K p, (where K = 0).determine the con-
trol action of this controller. The input to the controller is e
and the outputis p..

Actuating error signal —<
Flapper

P + pa~y

Figure 4-47 shows a pneumatic controller. The sig-
nal e is the input and the change in the control pressure p,
is the output. Obtain the transfer function P.(s)/E(s).

Assume that the pneumatic relay has the characteristics that
p. = Kpy, where K = 0.

Actuating error signal €

* Figure 4—46 Pneumatic controller.

[B=4=7] Consider the pneumatic controller shown in
Figure 4-48. What control action does this controller pro-
duce? Assume that the pneumatic relay has the character-
istics that p, = K p,, where K = 0.

Actuating error signal £
& & O\Flapper

Actuating error signal =<
R\Flapper

Py, + ps Nozzle __ /(a Py + pp Nozzle /l/“
X +x -4—‘ \'. \
N | b }l b
Orifige N '
— i | NP 11 1 II
[~
i \\\\ Z mea
>
il ;
71 — :
1 E + pe T 2 —_— Pr_' TP r’_l_|ql
—~_p -kl TP : Nl
Py Figure 4—47 Pneumatic controller. =~ ™~ s Figure 4-48 Pneumatic controller. ——L><XF-
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B—4-8.| Figure 4-49 shows a flapper valve. It is placed
between two opposing nozzles. If the flapper is moved slight-
ly to the right. the pressure unbalance occurs in the nozzles
and the power piston moves to the left, and vice versa. Such
a device is frequently used in hydraulic servos as the first-
stage valve in two-stage servovalves. This usage occurs
because considerable force may be needed to stroke larger
spool valves that result from the steady-state flow force. To
reduce or compensate this force. two-stage valve configura-
tion is often employed: a flapper valve or jet pipe is used as
the first-stage valve to provide a necessary force to stroke
the second-stage spool valve.

S— B L o -
Figure 4-49 -
Flapper valve. Flapper
I -
| P N |

L= x

Figure 4-50 shows a schematic diagram of a hydraulic
servomotor in which the error signal is amplified in two
stages using a jet pipe and a pilot valve. Draw a block
diagram of the system of Figure 4-50 and then find the trans-
fer function between y and x, where x is the air pressure and
yis the disp]acement of the power piston.

——

O

[N 1 rOl] under
* f * pressure P

—— X

i
LSy

pressure

Figure 4-50
Schematic diagram of a
hydraulic servomotor.

[B=4=9] Figure 4-51 is a schematic diagram of an aircraft elevator control system. The input to the system is the de-
flection angle 6 of the control lever, and the output is the elevator angle ¢. Assume that angles 6 and ¢ are relatively
small. Show that for each angle 6 of the control lever there is a corresponding (steady-state) elevator angle ¢.

Oil under
pressure

] L"‘ac
-
=

Figure 4-51 Alircraft elevator control system.

—

b —

-4
Ll L
y Y+ qd
1 1 I
O+gqi fw (r
Yy | .
T ~ C (Capacitance)
Figure 4-52
Liquid-level H+h e
control system. 1' _
O +4q.

(Resistance) R

Considel‘ the liquid-level control system shown in
Figure 4-52. The inlet valve is controlled by a hydraulic
integral controller. Assume that the steady-state inflow rate
is O and steady-state outflow rate is also O, the steady-state
head is H, steady-state pilot valve displacement is X = 0,
and steady-state valve position is Y. We assume that the set
point R corresponds to the steady-state head H. The set
point is fixed. Assume also that the disturbance inflow rate
q,. which is a small quantity, is applied to the water tank at
t = 0.This disturbance causes the head to change from H to
H + h.This change results in a change in the outflow rate

as possible in the presence of disturbances.) We assume that
all changes are of small quantities.

We assume that the velocity of the power piston (valve)
is proportional to pilot-valve displacement x, or

dy. Kix
where K is a positive constant. We also assume that the
change in the inflow rate g; is negatively proportional to the
change in the valve opening y.or gq; = — K,y
where K, is a positive constant.
Assuming the following numerical values for the system,

by g,. Through the hydraulic controller, the change in head € = 2 m’, R = 0.5 sec/m’, K, = 1m?/sec
causes a change in the inflow rate from O to O + ¢;. (The a—025m, b=075m, K, = 4sec™!
integral controller tends to keep the head constant as much  obtain the transfer function H (s)/Qu(s).
Consider the controller shown in Figure 4-53. The rﬁ —— Airp; (Input)
input is the air pressure p; measured from some steady-state
reference pressure P and the output is the displacement y of Bellows
the power piston. Obtain the transfer function Y (s)/P(s).
A thermocouple has a time constant of 2 sec. A x T e
thermal well has a time constant of 30 sec. When the ther- 77»7
mocouple is inserted into the well, this temperature- i
measuring device can be considered a two-capacitance :l
system. P2 g I
Determine the time constants of the combined thermo- 3 |
couple—thermal-well system. Assume that the weight of the -1
thermocouple is 8 g and the weight of the thermal well is N S I (Output)
40 g. Assume also that the specific heats of the thermocouple - = AP
and thermal well are the same. 7»7/'
Figure 4-53 Controller.

%k 3k 3k 3k 3k 3k 3k 3k 3k %k %k %k %k End Of Chapter (4) kkkkkkkkkkkkk
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