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Part (3)*
Frictionless Incompressible Flow

Why Do we Study Frictionless Flow?:

The effect of viscosity can be neglected in many parts of most real viscous flow fields
especially for external flow fields. It was found that viscous effects are important only near
any solid boundaries in a small thin layer called the boundary layer.

3.1 Introduction and Review:

The purposes of the present chapter are:(1) to explore more examples of potential
theory and (2) to indicate some flows which can be approximated by computational
fluid dynamics (CFD). The combination of these two gives us a good picture of in-
compressible-flow theory and its relation to experiment. One of the most important ap-
plications of potential-flow theory is to aerodynamics and marine hydrodynamics. First,
however, we will review and extend the concepts of frictionless flow given in Part 1.

Figure 3.1 reminds us of the problems to be faced. A free stream approaches two closely
spaced bodies, creating an “internal” flow between them and “external™ flows above
and below them. The fronts of the bodies are regions of favorable gradient (decreas-
ing pressure along the surface), and the boundary layers will be attached and thin: In-
viscid theory will give excellent results for the outer flow if Re = 10*. For the inter-
nal flow between bodies, the boundary layers will grow and eventually meet, and the
inviscid core vanishes. Inviscid theory works well in a “*short™ duct /D << 10, such as
the nozzle of a wind tunnel. For longer ducts we must estimate boundary-layer growth
and be cautious about using inviscid theory.

Inviscid external flow —= Separation
— — e — =
— )i
—— Boundary layer —=
-
~————__ Boundary layer —_—
~—_ " Fully
Freestream —= Inviscid internal core —= "= — viscous
T flow
— Boundary layer -
. . . . —
Fig. 3.1 Patching viscous- and in-
viscid-flow regions. Potential the- -
+ in this ch - does I —————_ Boundary layer —= ~
ory m thus chapter does not apply T
to the boundary-layer regions Inviscid external flow = Separation

For the external flows above and below the bodies in Fig. 3.1, inviscid theory should
work well for the outer flows, until the surface pressure gradient becomes adverse (in-
creasing pressure) and the boundary layer separates or stalls. After the separation point,
boundary-layer theory becomes inaccurate, and the outer flow streamlines are deflected
and have a strong interaction with the viscous near-wall regions. The theoretical analy-
sis of separated-flow regions is an active research area at present.

* Ref.:(1) Bruce R. Munson, Donald F. Young, Theodore H. Okiishi “Fundamental
of Fluid Mechanics” 4% ed., John Wiley & Sons, Inc., 2002.
(2) Frank M. White “Fluid Mechanics”, 4™ ed. McGraw Hill, 2002.
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3.1.1 Conservation of Mass:
From Part (1) we found the differential form of the mass conservation equation:

il J( put A pv o pw
;p+r(f>)+r(50)+r(f? ) _ o\
ar ox dy dz

(3.1)

As previously mentioned, this equation is also commonly referred to as the continuity

equation.

The continuity equation is one of the fundamental equations of fluid mechanics and,
as expressed in Eq. 3.1 , is valid for steady or unsteady flow, and compressible or incom-
pressible fluids. In vector notation, Eq. 3.1 can be written as

o

—, TVepv=0 (3.2)

Two special cases are of particular interest. For steady flow of compressible fluids

V-pV=20
I pit J( pv I pw
Apw) | Aev) | 2hew) _ (33)
ox dy oz

This follows since by definition p is not a function of time for steady flow, but could be a
function of position. For incompressible fluids the fluid density, p, is a constant throughout
the flow field so that Eq. 3.2 becomes

V-V=20 (34)

or

du Jv dw

—+— 4+ —=0 (3.5)
dx day daz

Equation 3.5 applies to both steady and unsteady flow of incompressible fluids. Note that

Eq. 3.5 is the same as that obtained by setting the volumetric dilatation rate (Eq. 1.9 ) equal

to zero. This result should not be surprising since both relationships are based on conserva-

tion of mass for incompressible fluids. However, the expression for the volumetric dilation

rate was developed from a system approach, whereas Eq. 3.5 was developed from a control

volume approach. In the former case the deformation of a particular differential mass of fluid

was studied, and in the latter case mass flow through a fixed differential volume was studied.
The differential form of the continuity equation in cylindrical coordinates is

) 1 d(rpuv, 1 o po, A pr.
9p  13kpy)  19(p ))_Ff(l_-"\.):

. - . 8] (3.6)
ar r ar a6 az

This equation can be derived by following the same procedure used in the preceding section
(see Problem 1.17). For steady, compressible flow

Hrpw,) . LEﬁ(pv,,) i a(pv.) o

1

— 3.7

r ar roo68 az ¢ )
Hm FIGURE 3.2 The representation of
velocity components in cyvlindrical polar
coordinates.
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For incompressible fluids (for steady or unsteady flow)

1a(rv,) 1 v, 0o,

— + —+ — =0 (3.8)
roodr roof dz

3.1.2 Stream Function:

Also from Part (1) we defined the stream function, y, for 2-D flow only as:

The stream function s is a clever device which allows us to wipe out the continuity eq
-uation and solve the momentum equation directly for the single variable .
The stream-function idea works only if the continuity equation ( 3.1 ) can be re-
duced to rwo terms. In general, we have four terms:

Cartesian: op + (—’ (ptt) 4—_le (pv) + 9 (pw) =0 ( 3.9a)
or ox ay 1z
Cylindrical: a_p + 1o (rpuv,) + L9 (pug) +_(—} (pv,) =10 ( 3.9b)
ar roar r o6 dz

First, let us eliminate unsteady flow, which is a peculiar and unrealistic application of
the stream-function idea. Reduce either of Eqs. ( 3.9 ) to any two terms. The most com-
mon application is incompressible flow in the xy plane
du av
—— 4+ —==0 (3.10)
dx ay
This equation is satisfied identically if a function y«(x, v) is defined such that Eq. ( 3.10)
becomes

o (0w, o (_au)

- . =0 (3.11)
ax \ dy ay dx |

Comparison of (3.10) and (3.11) shows that this new function y» must be defined such
that

O ur ous

(3.12)

{T.l_\' oX

aulr . O

or V=i—- -
oy X

Is this legitimate? Yes, it is just a mathematical trick of replacing two variables (¢ and

v) by a single higher-order function . The vorticity, or curl V. is an interesting func-

tion

2 2
curl V = 2kw,. = —kV7y where Vi = 9 f 4+ 2 gj (3.13)
=z ax ay
If we recall that the linear momentum equation is:
Momentum: p% = pg — Vp + u VIV (3.14)
p

Thus. if we take the curl of the momentum equation ( 3.14) and utilize Eq. (3.13). we
obtain a single equation for s
s D

(V24) — dyr
ay  dx ' adx ov

(V3 = v V2V (3.15)

where » = w/p is the kinematic viscosity. This is partly a victory and partly a defeat:
Eq. (3.15) is scalar and has only one wvariable. . but it now contains jfowurth-order
derivatives and probably will require computer analysis. There will be four boundary
conditions required on . For example. for the flow of a uniform stream in the x di-
rection past a solid body, the four conditions would be

A A
ay ax
oY Ay
av  ax

Dr. Mohsen Soliman -6-
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Many examples of numerical solution of Eqs. (3.15) and (3.16) are given in Ref. 1.
One important application is inviscid irrotational flow in the xv plane, where w_ = 0.
Equations (3.13) and (3.15) reduce to
2 2
A Y
Vztﬁr — - i

ax’ E)}!z

(3.17)

This is the second-order Laplace equation , for which many solutions and an-

alytical techniques are known. Also, boundary conditions like Eq. (3.16) reduce to
At infinity: r = U,y + const (3.18)

At the body: iy = const

It is well within our capability to find some useful solutions to Eqs. (3.17) and ( 3.18),
which we shall do in the solved numerical examples given later.

3.1.3 The Geometric Meaning of ¥ :

The fancy mathematics above would serve by itself to make the stream function im-
mortal and always useful to engineers. Even better, though, ¢r has a beautiful geomet-
ric interpretation: Lines of constant yr are streamlines of the flow. This can be shown
as follows. From the definition of a streamline in two-dimensional flow is

dx _ dy
u v
or udy—vdx=20 streamline (3.19)

Introducing the stream function from Eq. (3.12), we have

ﬂ dx + oY

ax ay

dv = 0= di (3.20)

Thus the change in ¢ is zero along a streamline, or
iy = const along a streamline (3.21)

Having found a given solution ydx, y), we can plot lines of constant ¢ to give the
streamlines of the flow.

There is also a physical interpretation which relates ¢ to volume flow. From Fig.
3.3, we can compute the volume flow dQ through an element ds of control surface of
unit depth

a0 =(v-mar=(iZL - @) (12— d—x) ds(1)
Iy ox ) \ ds ds
9 g4 2 dy = diys (3.22)
dJdx ay

Control surface
(unit depth

int
dO=(Ven)dA=dy into paper)

V=iu+ v
Fig.3.3 Geometric interpretation of
stream function: volume flow
through a differential portion of a sl i— ax i
control surface. ds ds
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Wy < i
WE>W1 //—//

Flow Flow —=——
Fig. 3.4 Sign convention for flow /
in terms of change in stream func-
tion: (a) flow to the right if s, is //—\ %
greater:; (b) flow to the lett if ¢ is ¥
greater. (a) (b)

Thus the change in ¥ across the element is numerically equal to the volume flow through
the element. The volume flow between any two points in the flow field is equal to the
change in stream function between those points:

-2 ~2
Qiz= | (Vemaa = ["ap=uo— (3.23)

Further, the direction of the flow can be ascertained by noting whether ¢ increases or
decreases. As sketched in Fig. 3.4 . the flow is to the right il 5, is greater than ysy .
where the subscripts stand for upper and lower, as before: otherwise the flow is to the
left.

Both the stream function and the velocity potential were invented by the French

mathematician Joseph Louis Lagrange and published in his treatise on fluid mechan-
ics in 1781.

Example 3.1:

If a stream function exists for the velocity field

u=a(x? — y*¥) wv= —2axy w

I
o

find it, plot it, and interpret it.

Solution

Since this flow field was shown expressly to satisfy the equation of continuity.
we are pretty sure that a stream function does exist. We can check again to see if

it + adu
ax ay

Substitute: 2ax + (—2ax) = 0 checks

Therefore we are certain that a stream function exists. To find ., we simply set

u = o _ ax® — ay’ (1)
avy .

__ow
ax

— 2axy 2)
and work from either one toward the other. Integrate (1) partially

ay’

= ax’y — + fix) (3)

Differentiate (3) with respect to x and compare with (2)

v

= 2axy + f(x) = 2axy ()
ax . : .

Therefore f(x) = 0. or = constant. The complete stream function is thus found

; 3
W = (.’(:(2_1' — ‘T) + C Ars. (5)

To plot this, set € = 0 for convenience and plot the function

3ty — v = 3¢ (6)

o
for constant values of . The result is shown in Fig. E3.1a to be six 60° wedges of circulating
motion, each with identical flow patterns except for the arrows. Once the streamlines are labeled,
the flow directions follow from the sign convention of Fig.3.4 . How can the flow be interpreted?
Since there is slip along all streamlines, no streamline can truly represent a solid surface in a
viscous flow. However, the flow could represent the impingement of three incoming streams at

60, 180, and 300°, This would be a rather unrealistic vet exact solution to the Navier-Stokes

Dr. Mohsen Soliman -8-




}.‘

a Flow around a 60° corner

—2a
\ \/
60° 60°
X 4
60° 60° —a ) 7
60° /
- /
2a ; L
/
/
) /
v =-2a / . L
—a /—\ Em e === = Incoming stream impinging
2a

0 The origin is a Flow around a against a 120° corner

a stagnation point rounded 60° corner

E3.1a E 3.1b

By allowing the flow to slip as a frictionless approximation, we could let any given stream-
line be a body shape. Some examples are shown in Fig. E3.1h

A stream function also exists in a variety of other physical situations where only

two coordinates are needed to define the flow. Three examples are illustrated here.
Example 3.2:

The velocity components in a steady, incompressible, two-dimensional flow field are
u = 2y
v = 4dx

Determine the corresponding stream function and show on a sketch several streamlines. In-
dicate the direction of flow along the streamlines.

§oLuTioN
From the definition of the stream function
dif
H = — == 2{
ay
- X
and
difs
v = —(,' = 4x
ox

The first of these equations can be integrated to give

o= v+ fi(x)

where f(x) is an arbitrary function of x. Similarly from the second equation
o= —2x" + fo(¥)

where f>(v) is an arbitrary function of y. It now follows that in order to satisfy both expres-
sions for the stream function

Y = —2x% + },2 + C {(Ans)

where C is an arbitrary constant.

Since the velocities are related to the derivatives of the stream function, an arbitrary
constant can always be added to the function, and the value of the constant is actually of no
consequence. Usually, for simplicity, we set C = 0 so that for this particular example the
simplest form for the stream function is

o= —2x7 + (1) (Ans)

Either answer indicated would be acceptable.
Streamlines can now be determined by setting ¢» = constant and plotting the resulting
curve. With the above expression for ¢ (with C = 0) the value of ¢ at the origin is zero so

Dr. Mohsen Soliman -9-



that the equation of the streamline passing through the origin {the of = O streamline) is
0= —2a" 4+ 3°
ot
¥y = *=vIx

Chiher streamlines can be obtained by setting o equal o variows constants. It follows from
Eq. 1 that the equaticns of these streamlines {for ¢ = 0) can be expressed in the form
2
$ /2
which we recognize as the equation of 8 hyperbola. Thos, the streamlines are 8 family of lay-
perbolas wit the ff = 0 streamlines as asymprotes, Several of the streamlines are ploted in
Fig. E3 2, Since the velocities can be calculated at any point, the direction of flow along a
given streamline can be casily deduced. For example, © = —difwfdx = 4w 50 that v > O if
A OQand v << O if v << O, The direction of flow is indicated on the figuns.

3.1.4 Stream function for Steady Plane Compressible Flow:

Suppose now that the density is variable but that w = 0, so that the flow is in the xy
plane. Then the equation of continuity becomes
d d
— (pu) + — (pv) =0 (3.24)
adx dv

We see that this is in exactly the same form as Eq. ( 3.11). Therefore a compressible-
flow stream function can be defined such that
OYs

s
H = — v = —
P av P ax

QD

(3.25)

Again lines of constant i are streamlines of the flow, but the change in ¢ is now egual
to the mass flow, not the volume flow

dm= p(V - n) dA = dis

-2

or M= | p(V ) dA = 4o — n (3.26)
The sign convention on flow direction is the same as in Fig. 3.4. This particular stream
function combines density with velocity and must be substituted into not only mo-
mentum but also the energy and state relations as giveninpart 1 with pressure and tem-
perature as companion variables. Thus the compressible stream function is not a great
victory, and further assumptions must be made to effect an analytical solution to a typ-

ical problem (see, e.g., Ref. 5).

Strategy for solving two dimensional, inviscid flow problems (get Stream function ¥)

Cartesian Coordinates, check 1% if VxV = 0?
(1) Stream function
Is equation of continuity satisfied? |~

Given: v, = v,(x.y) &v, = v, (x,y)

dv, v, Find ¥ (xy) and ®(xy)
= o u #| A stream function y (x,y) does not exist |

e ov (2) Potential

Yes o .
1 et dy e ax Function ®

v, = i & v = it 3

' B a_ y N _E . ” N »
y Laterwefind v, = — & L

llme;me

V=¥ (xy)+f(x)+C1 orget] compare 2 functions and
W= ¥,(xy) +fly)+Cc2 |Evaluate integration constants | get ¥ =¥(xy) +C

Dr. Mohsen Soliman -10-




3.1.5 Stream function for Incompressible Plane Flow in Polar Coordinates:

Suppose that the important coordinates are » and @, with . = 0O, and that the density
is constant. Then Eq. ( 3.9 b)) reduces to
1 o 1 o
327
roar roae C )

After multiplying through by . we see that this is the same as the analogous form oft
Eq. (3.11)
a S afr " o - 0
ar ao ao ar
By comparison of ( 3.27) and ( 3.28 ) we deduce the form of the incompressible polar-
coordinate stream function

3.28)

1 a o
v, = — L g — — _"b- { 3.29)
o0 ar
Omnce again lines of constant ¢ are streamlines, and the change in r is the volume flow
y_.o = fr> — afry. The sign convention is the same as in Fig. 3.4 . This type of stream
function is very useful in analyzing flows with cylinders., vortices, sources, and sinks

(as shown later ).

3.1.6 Stream function for Incompressible Axisymmetric Flow:

As a final example. suppose that the flow is three-dimensional (v,. ) but with no cir-
cumferential variations, vg = /960 = O (see Fig. 3.2 for definition of coordinates). Such
a rlow 1s termed axisvanerric, and the Tlow pattern 1s the same when viewed on any
meridional plane through the axis of revolution z. For incompressible flow., Eq. ( 3.9 b))
becomes

% adr (rop) + adz

() = 0 ( 3.30)

This doesn’t seem to work: Can’t we get rid of the one » outside? But when we real-
ize that » and 7 are independent coordinates. Eq. { 3.30 ) can be rewritten as

o
- ) + _ e -
ar Cru,.) 9= Cru) O C 3.31 )
By analogy with Eq. (3.11). this has the form
& du’l N
ar az ( ) O (3.32 )

By comparing ( 3.31 ) and ( 3.32 ). we deduce the form of an incompressible axisym-
metric stream function (., )

1 aw _

vr = T Taz ve =

Q

1 o
" Tar (3.33)

Here again lines of constant ir are streamlines. but there is a factor (27) in the volume
flow: @, .- = 2oty — tfry). The sign convention on flow is the same as in Fig.3 4 .

Strategy for solving two dimensional, inviscid flow problems (get Stream function ¥)
Polar or Cylinderical Coordinates, check 1% if VxV =07

| lon of t isfied? ill Stream function Given: v, = I?r{r.B) & U, = I?.(r.ﬂ}
B 3?”’:]?" (;‘::i:' = Find W(r,8) and ®(r,6)
$ o
il L A stream function ¥ (r, 8)does not exist !
Lov il (2) Potential
Yes 10¥ Kid
l ST TR Function ®
. 19¥ - vy |
B e— (] T —
AT ar Later we find vr__& p,_:::

llntegme

V=90 + f(8)+ C1 orget Compare 2 functions and
W= ,(r0)4+f(r)+C2 |Evaluate integration constants)| get ¥ =¥(r,0)+C

Dr. Mohsen Soliman -11-




Example 3.3:

Investigate the stream function in polar coordinates

2
w:Usinﬂ(r—R—) (1)

s

where 7 and R are constants, a velocity and a length. respectively. Plot the streamlines. What
does the flow represent? Is it a realistic solution to the basic equations™?

Solution

The streamlines are lines of constant yr, which has units of square meters per second. Note that
Y/ (UR) 1s dimensionless. Rewrite Eq. (1) in dimensionless form

¥ _ _ 1 - >
UR—Slnﬁ'T}' n '-'}'—R (2)
Of particular interest is the special line ¢ = 0. From Eq. (1) or (2) this occurs when (a) 8 = 0
or 1807 and () r = R. Case (@) is the x-axis, and case (£) is a circle ol radius R, both of which
are plotted in Fig. E3.3.

For any other nonzero value of i il is easiest to pick a value of r and solve for &:

. WI(UR)

Sin 0 = R — Rir 3)
In general, there will be two solutions for 8 because of the symmetry about the y-axis. For ex-
ample take y/(UR) = +1.0:

Streamlines converge,
high-velocity region

Y _ +1
UR
1
+—
2
0
0
+1 0
_1
2
-1
Singularity
E33 at origin
Guess r/R I 3.0 I 2.5 I 2.0 I 1.8 | 1.7 | 1.618
Compute & 22° 28" 42 54° 64" Q0=
158 152 1387 1567 1167
This line is plotted in Fig. E-3.3 and passes over the circle »r = R. You have to watch it. though.
because there is a second curve tor ¢ /(UR) = + 1.0 tor small »r << R below the x-axis:
Guess 1/R I 0.618 I 0.6 I 0.5 I 0.4 I 0.3 I 0.2 I 0.1
Compute & —00° | —70° —42° | —28° | —19° | —12° | —6°
—110° — 138" —152* —161° — 168~ — 174"

This second curve plots as a closed curve inside the circle » = R. There is a singularity ol infi-

nite velocity and indeterminate flow direction at the origin. Figure E3.3 shows the full pattern.
The given stream function., Eq. (1). is an exact and classic solution to the momentum equa-

tion for frictionless flow. Outside the circle r = R it represents two-dimensional inviscid

flow of a uniform stream past a circular cylinder . Inside the circle it represents a rather

unrealistic trapped circulating motion of what is called a line doubler.

Dr. Mohsen Soliman -12-



3.1.7 Graphical Superposition of Stream Functions of Plane Flows:

We can now form a variety of interesting potential flows by summing the velocity-
potential and stream functions of a uniform stream. source or sink. and vortex. Most
of the results are classic., of course, needing only a brief treatment here.

A simple means of accomplishing ., = > 4y graphically is to plot the individual
stream functions separately and then look at their intersections. The wvalue of i, at
ecach intersection is the sum of the individual values ¢, which cross there. Connecting
intersections with the same value of i, creates the desired superimposed tlow stream-
lines.

A simple example is shown in Fig. 3.5, summing two families of streamlines i, and
s, The individual components are plotted separately. and four typical intersections are
shown. Dashed lines are then drawn through intersections representing the same sum
ot i, + Y. These dashed lines are the desired solution. Often this graphical method
is a quick means of evaluating the proposed superposition before a full-blown numer-
ical plot routine is executed.

W=y,

Family (a)

v =,

Combined
streamline

Family (&)

Fig. 3.5 Intersections of elementary
streamlines can be joined to form a

combined streamline. W=y

3.1.8 Vorticity and Irrotationality:

The assumption of zero fluid angular velocity, or irrotationality, is a very useful sim-
plification. Here we show that angular velocity is associated with the curl of the local-
velocity vector.

The differential relations for deformation of a fluid element can be derived by ex-
amining Fig. 3.6 . Two fluid lines AB and BC, initially perpendicular at time 7, move
and deform so that at t + df they have slightly different lengths A’B" and B'C’ and are
slightly off the perpendicular by angles da and d3. Such deformation occurs kinemat-
ically because A, B, and C have slightly different velocities when the velocity field V

% v o

|
I s .
ry | A
|
|
|
I -
v 4 (I L Y | Time:  + «ff
; v = : —-
|
I i
Line 2 | e
y - w Foe g - -
I—< o+ 'f]“_-('*x ol —
Time - -
o v
| / hd
» . 5 Line 1
4 = o L

Fig. 3. & Angular velocity and
strain rate of two fluid lines de-
forming in the xv plane.

o
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has spatial gradients. All these differential changes in the motion of A, B, and C are
noted in Fig. 3.6 .

We define the angular velocity w,. about the z axis as the average rate of counter-
clockwise turning of the two lines

. = —
= . dr dr

>

1 ("daf (fﬁ') ( 3.34)

But from Fig. 3.6 . da and d83 are each directly related to velocity derivatives in the
limit of small dr

e — 1 1 (av/fox) dx dr  dv J
da = Um | tan dx + (du/dx) dx dr ax
. ( 3.35)
8 — li tan " (dufay) dy dr _du 7
ap TN gy + oy dv dr | T ay € !
Combining Eqs. (3.34 ) and ( 3.35 ) gives the desired result:
1 /av dit
w. = — (2¥ _ 3.36
= 2 ( ax av ) ( )
In exactly similar manner we determine the other two rates:
1 /aw au’ 1 /ou An
= = — === — 3.37
@ =35 (5 5 ) @ =3 (32 ~ ox ) ( )
The vector w = ier, + jeo, + Keo, is thus one-half the curl of the velocity vector
i i k
1 ~ 1 5. o o
w = = (curl V) = e - . ( 3.38)
2 2 X oy oz

if LB W

. ~ -~ 1 - . - .
Since the factor of 7 is annoying. many workers prefer to use a vector twice as large.
called the vorticiry:

L= 2 = curl V L 3.39)

Many flows have negligible or zero vorticity and are called irrorational
curl ¥V = 0 { 3.40)

The next section expands on this idea. Such flows can be incompressible or com-
pressible. steady or unsteady.

We may also note that Fig. 3.6. demonstrates the shear-strain rate ot the element,
which is defined as the rate of closure of the initially perpendicular lines
dor d, duv it

-+ £ = — 4 ==

dr dr ax av

€. = ( 3.41)
When multiplied by viscosity g, this equals the shear stress 7, in a newtonian fluid.

3.2 Conservation of Linear Momentum (Navier-Stokes Equations):

Also from Part (1) we defined the Conservation of Linear Momentum as:

The basic differential momentum equation for an infinitesimal element

dV
pg — Vp+V-7,=0p (3.42)
dt
dv IV A% IV <Y
where = + u ‘ + v (_ + w < (3.43)
dr at ax ay az
We can also express Eq. (3.42) in words:
Gravity force per unit volume + pressure force per unit volume
+ viscous force per unit volume = density > acceleration (3.44)

Equation (3.42) is so brief and compact that its inherent complexity is almost invisi-
ble. It is a vector equation, each of whose component equations contains nine terms.
Let us therefore write out the component equations in full to illustrate the mathemati-
cal difficulties inherent in the momentum equation:
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pg. — L 4 OTex | OTex | T _ f0u ,  Ou . 0u a”)
ax dx ay az ar dx ay Jz

pg, — L 4 9T | OTw | OTey _ 0V, OV, 00, ﬂ) (3.45)
ay dx ay az ar dx ay az

pg. — op + I7y n dTyz + o7 _ P c’:tw 4w aw L c’?w 4o dw)
az dx avy az ar ox dy oz

This is the differential momentum equation in its full glory, and it is valid for any fluid
in any general motion, particular fluids being characterized by particular viscous-stress
terms. Note that the last three “convective™ terms on the right-hand side of each com-
ponent equation in ( 3.45) are nonlinear, which complicates the general mathematical
analysis.

The stresses as defined in the preceding section can be substituted into the differential equa-
tions of motion (Eqs. 3.45) and simplified by using the continuity equation (Eq. 3.5 ) to ob-
tain (x direction):

au N Aut N au N r'}u) ap N N (r’}gu N a%u N r'Jzu) ( 3.46 a)
—+tu—+tovo—+w—|=— 46 a
P\ ar dx ay az ax  PET M 2 T 52 T a2
(v direction)
av av av v ap v v 8w
P ’—+H'—+'U’—+ W — :—_——Fpg‘—f—p(, ’,,+ ',,+ — (3.46}_)}
dr dx day oz dy ‘ dx ay~ 1z"
(z direction)
dw dw Jw aw ap a*w 9w 9w
pl—t+u—+v—+ w— = ———+tpg.tpul 5+t 5+ 3 (346 c)
ar ax day Jz az h ax ay”® az

where we have rearranged the equations so the acceleration terms are on the left side and
the force terms are on the right. These equations are commonly called the Navier—Stokes
equations, named in honor of the French mathematician L. M. H. Navier (1758—-1836) and
the English mechanician Sir G. G. Stokes (1819—1903), who were responsible for their for-
mulation. These three equations of motion, when combined with the conservation of mass
equation (Eq.3.5 ), provide a complete mathematical description of the flow of incom-
pressible Newtonian fluids. We have four equations and four unknowns («, v, w, and p). and
therefore the problem is “well-posed” in mathematical terms. Unfortunately, because of
the general complexity of the Navier—Stokes equations (they are nonlinear, second-order, par-
tial differential equations), they are not amenable to exact mathematical solutions except in
a few instances. However, in those few instances in which solutions have been obtained and
compared with experimental results, the results have been in close agreement. Thus, the
Navier—Stokes equations are considered to be the governing differential equations of motion
for incompressible Newtonian fluids.

In terms of cylindrical polar coordinates (see Iig. 3.2), the Navier—Stokes equation can
be written as

(r direction)

. . . 2 .
p((m” + v, av, LY Jv, vy . (J"v,.)

ar ar rooae r * oz
ap 1 o awv, - 1 v, 2 dv, ‘v,
= ——— + + — -+ — — + 3.47 a
ar  PETH [ r {Jr( ar rt o r? ag? rZ 00 az? ( )
(¢ direction)
av v Vy IV v,V auv
P - a + vr - i + (7] - i + Y + v g f:)
ar ar roae r © oz
1o 1 a av v 1 o’ 2 av g%
= —— L pgy | (P ) - S S S (3470
roaf ) roar ar re r< ae re af az
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(z direction)

av, ov, v, dv, v,
P + v, + —— + v.—

ar ar rode Y0z
ap 1 o/ ov, 1 v, 9. _
= ——+pg. + pl——\r— +—_,_2 + — (347¢c)
Jz - rdr dr re ot oz

3.2.1 Irrotational Flow Fields:
If we make one additional assumption—that the flow is irrotational—the analysis of invis-

cid flow problems is further simplified. Recall from part (1)sec. 1.3 that the rotation of a fluic
element is equal to l,(\" X V), and an irrotational flow field is one for which Vx V=10
Since the vorticity, £, is defined as V X V. it also follows that in an irrotational flow fielc
the vorticity is zero. The concept of irrotationality may seem to be a rather strange condi-
tion for a flow field. Why would a flow field be irrotational? To answer this question we note
that if —5(‘7 X V) = 0, then each of the components of this vector, must be equal to zero.
Since these components include the various velocity gradients in the flow field, the
condition of irrotationality imposes specific relationships among these velocity gradients.
For example, for rotation about the 7 axis to be zero, it follows that

| fav  du
w,=—|——-——]=0
o 2\ax  dy

and, therefore, W o
— = (3.2)
ax  dy
Similarly from the conditions for zero rotation about the x-axis and the y-axis
dw v du  ow
—=— (3.b) and —=— (3.0)
dy az az ax

A general flow field would not satisfy these three equations. However, a uniform flow as i
illustrated in Fig. 3i does. Since u = U (a constant), v = 0, and w = 0, it follows tha
Egs.3.a ,3b ,and 3.c are all satisfied. Therefore, a uniform flow field (in which there are
no velocity gradients) is certainly an example of an irrotational flow.

Uniform flows by themselves are not very interesting. However, many interesting anc
important flow problems include uniform flow in some part of the flow field. Two examples
are shown in Fig. 33 . In Fig.(3.11 a) a solid body is placed in a uniform stream of fluid. Fas
away from the body the flow remains uniform, and in this far region the flow is irrotational
In Fig.(3.11 b), flow from a large reservoir enters a pipe through a streamlined entrance where
the velocity distribution is essentially uniform. Thus, at the entrance the flow is irrotational

_— u = U (constant)

—_—
E— p=0
_}-

_— w=0

X

d B FIGURE 31 Uniform flow in the x direction.
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Uniform Inviscid,
entrance irrotational core
wvelocity
/; 5
/ Boundary layer
(&)
B FIGURE311 Various regions of flow: (a) around bodies; (#) through channels.

For an inviscid fluid there are no shearing stresses—the only forces acting on a fluid
element are its weight and pressure forces. Since the weight acts through the element center
of gravity, and the pressure acts in a direction normal to the element surface, neither of these
forces can cause the element to rotate. Therefore, for an inviscid fluid, if some part of the
flow field is irrotational, the fluid elements emanating from this region will not take on any
rotation as they progress through the flow field. This phenomenon is illustrated in Fig. 31ii a
in which fluid elements flowing far away from the body have irrotational motion, and as they
flow around the body the motion remains irrotational except very near the boundary. Near
the boundary the velocity changes rapidly from zero at the boundary (no-slip condition) to
some relatively large value in a short distance from the boundary. This rapid change in ve-
locity gives rise to a large velocity gradient normal to the boundary and produces significant
shearing stresses, even though the viscosity is small. Of course if we had a truly inviscid
fluid, the fluid would simply “‘slide™ past the boundary and the flow would be irrotational
everywhere. But this is not the case for real fluids, so we will typically have a layer (usually
very thin) near any fixed surface in a moving stream in which shearing stresses are not neg-
ligible. This layer is called the boundary layer. Outside the boundary layer the flow can be
treated as an irrotational flow. Another possible consequence of the boundary layer is that
the main stream may “‘separate” from the surface and form a wake downstream from the
body. The wake would include a region of slow, randomly moving fluid.

To completely analyze this type of problem it is necessary to consider both the inviscid,
irrotational flow outside the boundary layer, and the viscous, rotational flow within the
boundary layer and to somehow “match™ these two regions.

As is illustrated in Fig. 3.i b, the flow in the entrance to a pipe may be uniform (if the
entrance is streamlined), and thus will be irrotational. In the central core of the pipe the flow
remains irrotational for some distance. However, a boundary layer will develop along the
wall and grow in thickness until it fills the pipe. Thus, for this type of internal flow there
will be an entrance region in which there is a central irrotational core, followed by a so-
called fully developed region in which viscous forces are dominant. The concept of irrota-
tionality is completely invalid in the fully developed region. This type of internal flow prob-
lem is considered in detail in Part (2).

The two preceding examples are intended to illustrate the possible applicability of
irrotational flow to some “real fluid” flow problems and to indicate some limitations of the
irrotationality concept. We proceed to develop some useful equations based on the assump-
tions of inviscid, incompressible, irrotational flow, with the admonition to use caution when
applying the equations.

Dr. Mohsen Soliman -17-



3.2.2 Case of Frictionless and Irrotational Flow (Euler’s Equations):

When a flow is both frictionless and irrotational, pleasant things happen. First, the mo-
mentum equation ( 3.46) reduces to Euler’s equation

dV
= — Vp 3.48
P T PB ! ( )
Second, there is a great simplification in the acceleration term. Recall from Partl
that acceleration has two terms
dVv aV

— +4 FA—- ‘V T
dr ar v v

A beautiful vector identity exists for the second term [11]:
(V- V)V=VEV)+ XV (3.49)

where { = curl ¥V from Eq. ( 3.39 ) is the fluid vorticity.
Now combine ( 3.48 ) and ( 3.49 ), divide by p. and rearrange on the left-hand side.
Dot the entire equation into an arbitrary vector displacement dr:

av /1 ) 1
+\7‘—V2)+ XV +—Vp—g|-dr=0 3.50
[ Py [\‘2 J+¢ L g} 0 ( )
Nothing works right unless we can get rid of the third term. We want

(EX V) -(dr)=0 ( 3.51)
This will be true under various conditions:

1. Vs zero; trivial, no flow (hydrostatics).

(]

{ is zero; irrotational flow.
3. dr is perpendicular to { X V; this is rather specialized and rare.
4. dr is parallel to V. we integrate along a streamline

Condition 4 is the common assumption. If we integrate along a streamline in friction-

less compressible flow and take, for convenience, g = —gk. Eq. ( 3.50 ) reduces to
AV 1 ! 1
& -dr+d(—vz)+ﬁ+gdz=0 ( 3.52)
ar 2 fe) i

Except for the first term, these are exact differentials. Integrate between any two points
I and 2 along the streamline:
2 - 2
(}1’; (‘fp l 2 2
“ds+ | L~ (V3 VD +g:m— ) =0 (3.53 )

J1ooadf 41 P 2

where ds is the arc length along the streamline. Equation ( 3.53 ) is Bernoulli’s equa-
tion for frictionless unsteady flow along a streamline . Forincompressible steady flow,
it reduces to

2 | .
24 5 V? + gz = constant along streamline (3.54)

The constant may vary from streamline to streamline unless the flow is also irrotational
(assumption 2). For irrotational flow { = 0, the offending term Eq. ( 3.51 ) vanishes
regardless of the direction of dr, and Eq. (3.54 ) then holds all over the flow field with
the same constant.
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3.2.3 The Velocity Potential, @ :

Irrotationality gives rise to a scalar function ¢ similar and complementary to the stream
function . From a theorem in vector analysis [11], a vector with zero curl must be the
gradient of a scalar function

It VXxV=0 then V=Vdo ( 3.55)

where ¢ = ¢ (x, v, z, 1) is called the velocity potential function. Knowledge of ¢ thus
immediately gives the velocity components
dd ad dh

i = v = W = B { 356 }

X av 0z

Lines of constant ¢ are called the potential lines of the flow.

Note that ¢, unlike the stream function, is fully three-dimensional and not limited
to two coordinates. It reduces a velocity problem with three unknowns u#, v, and w to
a single unknown potential ¢; many examples are given in this part of the study. The
velocity potential also simplifies the unsteady Bernoulli equation (3.52 ) because if ¢
exists, we obtain

v 0 o o o
o dr = = (Vep) - dr = d( = ] (3.57)
Equation ( 3.52 ) then becomes a relation between ¢ and p
i " dp 1
%:)4- i+;‘v¢)|2+gz=const (3.58 )
0 J 2

This is the unsteady irrotational Bernoulli equation. It is very important in the analy-
sis of accelerating flow fields (see, e.g., Refs. 10 and 15), but the only application in
this text will be for steady flow.

3.2.4 The Orthogonality of Stream Lines and Potential Lines:

If a flow is both irrotational and described by only two coordinates, i and ¢ both ex-
ist and the streamlines and potential lines are everywhere mutually perpendicular ex-
cept at a stagnation point. For example, for incompressible flow in the xy plane, we
would have

) A
u = oy = ﬁ (3.59 )
ay dx
__oy 9
v= o= ay (3.60 )

Can you tell by inspection not only that these relations imply orthogonality but also
that ¢» and  satisfy Laplace’s equation?!? A line of constant ¢» would be such that the
change in ¢ is zero

) )
ddp = 9P ;o4 22 dy =0 =udx + vdy (3.61 )
ax dy '
Solving, we have
dy u ) ( )
(\ dx )¢,= T v (@) g —cons 3.62

Equation ( 3.62 ) is the mathematical condition that lines of constant ¢ and ¢ be mu-
tually orthogonal. It may not be true at a stagnation point, where both # and v are zero,
so that their ratio in Eq. ( 3.62 ) is indeterminate.
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3.2.5 The Generation of Rotationality:

This is the second time we have discussed Bernoulli’s equation under different circum-
stances (the first was in Part 1 ). Such reinforcement is useful. since this is probably
the most widely used equation in fluid mechanics. It requires frictionless flow with no
shaftt work or heat transfer between sections 1 and 2. The flow may or may not be ir-
rotational, the latter being an easier condition, allowing a universal Bernoulli constant.
The only remaining question is: Whern 1s a flow irrotational? In other words., when
does a flow have negligible angular velocity? The exact analysis of fluid rotationality
under arbitrary conditions is a topic for advanced study. e.g.. Ref. 10, sec. 8.5 Ref. 9,
sec. 5.2; and Ref. 5, sec. 2.10. We shall simply state those results here without proof.
A fluid flow which is initially irrotational may become rotational if

1. There are significant viscous forces induced by jets., wakes, or solid boundaries.
In this case Bernoulli’s equation will not be valid in such viscous regions.

'Y Equations (3_sg ) and ( 3.60) are called the Cauchy-Riemann equations and are studied in com-
plex-variable theory.

Wiscous regions where Bernoulli's equation fails:

Laminar Turbulent
o boundary boundary
layer layer Separated
Flows w ﬂ“‘
Flow
= U N B ey S
hx-
I O | : Fig. 3 -,"r Typical flow patterns il-
- - e
lustrating viscous regions patched
e -~ - - -
- e onto nearly frictionless regions:
LUniform .
approach {a) low subsonic flow past a body
a g . . .
flow (L7 = a); frictionless, irrotational
{irrotational ) potential flow outside the boundary
[=3] layer (Bernoulli and Laplace equa-
ttons valid); (&) supersonic flow
Curved shock wave introduces rotationality past a body (I = a); frictionless,
Wiscous regions where Bernoulli is invalid: rotational flow nuls_Jdc thc_ h(}und.—
_ ary layer { Bernoulli equation wvalid,
Laminar Turbulent potential flosw mwvalid).
boundary boundary Slight
.
U layer layer separated Wake
flow Row
__r_1_r:::§/ /
——
Ulniform
SUpersonic
approach
{irrotational )
iH)
2. There are entropy gradients caused by curved shock waves (see Fig. 3.7 b).
3. There are density gradients caused by stratification (uneven heating) rather than
by pressure gradients.
4. There are significant rroninertial effects such as the earth’s rotation (the Coriolis

acceleration).

In cases 2 to 4, Bernoulli’s equation still holds along a streamline if friction is negli-
gible. We shall not study cases 3 and 4 in this book. Case 2 will be treated briefly in
Chap. 9 on gas dynamics. Primarily we are concerned with case 1, where rotation is
induced by viscous stresses. This occurs near solid surfaces. where the no-slip condi-
tion creates a boundary layer through which the stream wvelocity drops to zero., and in
jets and wakes. where streams of different velocities meet in a region of high shear.

Internal flows, such as pipes and ducts, are mostly viscous, and the wall layers grow
to meet in the core of the duct. Bernoulli’s equation does not hold in such flows un-
less it is modified for viscous losses.

External flows. such as a body immersed in a stream. are partly viscous and partly
inviscid, the two regions being patched together at the edge of the shear layver or bound-
ary layer. Two examples are shown in Fig. 3.7 . Figure 3.7 a shows a low-speed
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subsonic flow past a body. The approach stream is irrotational; i1.e., the curl of a con-
stant is zero. but viscous stresses create a rotational shear layer beside and downstream
of the body. Generally speaking (see part 2 ), the shear layer 1s laminar, or smooth,
near the front of the body and turbulent, or disorderly, toward the rear. A separated. or
deadwater, region usually occurs near the trailing edge, followed by an unsteady tur-
bulent wake extending far downstream. Some sort of laminar or turbulent viscous the-
ory must be applied to these viscous regions; they are then patched onto the outer flow,
which i1s frictionless and irrotational. If the stream Mach number is less than about (0.3,
we can combine Eq. (3.56 )} with the incompressible continuity equation

V- V=V-(NVgp) =10

. i 32 o 3>
or v—.’rfj _ {} _ 1J- I'__'.:' + ) l’1_-.:' + C 1'1_-.3 ( 3_63 -'

ox av az<

This 1s Laplace’s equation in three dimensions. there being no restraint on the number
of coordinates in potential flow. A great deal of part3  will be concerned with solv-
ing Eq. (3.6 3 ) for practical engineering problems; it holds in the entire region of Fig.
3.7 a outside the shear layer.

Figure 3.7 b shows a supersonic flow past a body. A curved shock wave generally
forms in front, and the flow downstream is rofational due to entropy gradients (case
2). We can use Euler’s equation { 3.48 ) in this frictionless region but not potential the-
ory. The shear layers have the same general character as in Fig. 3.7 a except that the
separation zone is slhight or often absent and the wake i1s usually thinner. Theory of sep-
arated flow is presently qualitative. but we can make guantitative estimates of laminar
and turbulent boundary layers and wakes.

Example 3.4:

If a velocity potential exists for the velocity field

u = a(x® — _\'2) v = —2axy w =0

find it, plot it. and compare with Example 3.1 .

Solution

Since w = 0, the curl of ¥V has only one 7 component, and we must show that it is zero:
. du dit d ad
(V X WV d = 2(1:}2 = E — E = ﬁ (—2(]’,‘{‘1') — a ((.',‘(2 — ('-'_\‘2)
= —2av + 2ay =0 checks Ans.

The flow is indeed irrotational. A potential exists.
To find ¢(x. v). set

Integrate (1)
3
ax
¢=3 -

Differentiate (3) and compare with (2)

‘2}—? = —2axy + f'(v) = —2axy 4

Therefore f' = 0, or f = constant.

axy* + f(y) (3)

The velocity potential is

3
ax” .
b= 3 ax_vz + C Ans.

E34
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Letting C = 0, we can plot the ¢ lines in the same fashion as in Example 3.1. The result is shown
in Fig. E3.4 (no arrows on ¢). For this particular problem, the ¢ lines form the same pattern as
the ¢ lines of Example3.1 (which are shown here as dashed lines) but are displaced 30°. The
¢ and ¢ lines are everywhere perpendicular except at the origin, a stagnation point, where they
are 307 apart. We expected trouble at the stagnation point, and there is no general rule for de-
termining the behavior of the lines at that point.

Example 3.5:

The two-dimensional flow of a nonviscous, incompressible fluid in the vicinity ot the 907
cormer of Fig. E3.5 ais described by the stream function

s = 272 sin 26

where ¢ has units of m?/s when r is in meters. (a) Determine. if possible, the corresponding
wvelocity potential. (b) If the pressure at point (1) on the wall is 30 kPa, what is the pressure
at point (2)? Assume the fluid density is 10? kg/m? and the x—y plane is horizontal—that is,
there is no difference in elevation between points (1) and (2).

Streamline (yw = constant)

v
—
Equipotential
— @) line
T (@ = constant)
¥

0.5 m
l \\, e |{1|)
! 1m ! x
(a) &
(c) B FIGURE E3.5
Solution
(a) The radial and tangential velocity components can be obtained from the stream func-
tion as : 1 ais
v, = o0 4r cos 26
r
and J
s
vy, = —— = —4rsin 26
Since o or
v, = ,—
ar
. -~ , -jd
it follows that f’ > Ar cos 20
ar
and therefore by integration ¢ = 2% cos 260 + f(0) (1)
where fi(#) is an arbitrary function of #. Similarly
1 ag
= L = v e ]
vy _—y 4r sin 26

and integration yields ¢ = 2r? cos 26 + fo(r) (2)
where f5(r) is an arbitrary function of r. To satisfy both Eqgs. 1 and 2, the velocity po-

tential must have the form 5
¢ = 2r-cos 260 + C (Ans)
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where C is an arbitrary constant. As is the case for stream functions, the specific value
of C is not important, and it is customary to let C = 0 so that the velocity potential for
this corner flow is &d = 272 cos 26 (Ans)

In the statement of this problem it was implied by the wording it possible™ that
we might not be able to find a corresponding velocity potential. The reason for this con-
cern is that we can always define a stream function for two-dimensional flow, but the
flow must be irrotational if there is a corresponding velocity potential. Thus, the fact
that we were able to determine a velocity potential means that the flow is irrotational.
Several streamlines and lines of constant ¢ are plotted in Fig. E3.5 b These two sets of
lines are orthogonal. The reason why streamlines and lines of constant ¢ are always
orthogonal is explained in next sections.

(b) Since we have an irrotational flow of a nonviscous, incompressible fluid, the Bernoulli
equation can be applied between any two points. Thus, between points (1) and (2) with

no elevation change Iy . V2 s . V2

Y 2g Y 2g
P 3
P2 =p1+ ;(V% — V2) 3

Since
VZi=w2+ v

or

it follows that for any point within the flow field
V? = (4r cos 26)* + (—4r sin 26)°
= 16r3(cos® 268 + sin® 26)
= 16r°

This result indicates that the square of the velocity at any point depends only on the ra-
dial distance. ., to the point. Note that the constant, 16, has units of s~ 2. Thus,

Vi = (16 s72)(1 m)> = 16 m?/s?
Vi = (16 s (0.5 m)? = 4 m?/s?

and

Substitution of these velocities into Eq. 3 gives

10°kg,/m?
>

Py = 30 < 10° N/m* + (16 m?/s> — 4 m?/s?) = 36 kPa (Ans)

The stream function used in this example could also be expressed in Cartesian

coordinates as Yr = 252 sin 260 = 452 sin & cos 6

or s = dxy

since x = rcos B and v = rsin #. However. in the cylindrical polar form the results can

be generalized to describe flow in the vicinity of a corner of angle « (see Fig. E3.5¢)

with the equations -
W = Ar7™/ sin o

and -
¢ = Ar7 cos il

where A is a constant.

¥

3.3 Some lllustrative Plane Potential Flows:
A major advantage of Laplace’s equation is that it is a linear partial differential equation.
Since it is linear. various solutions can be added to obtain other solutions—that is. if ¢ (x, v, 2)
and ¢bo(x. y. z) are two solutions to Laplace’s equation, then ¢b; = ¢b; + b5 is also a solution.
The practical implication of this result is that if we have certain basic solutions we can com-
bine them to obtain more complicated and interesting solutions. In this section several basic
velocity potentials., which describe some relatively simple flows, will be determined. In the
next section these basic potentials will be combined to represent complicated flows.

For simplicity. only plane (two-dimensional) flows will be considered. In this case, by
using Cartesian coordinates

dch dcb
" = — v o= — (3.64)
ox ay
or by using cylindrical coordinates
dch 1 ddb
v, = Vy = —— (3.65)
ar roag
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Since we can define a stream function for plane flow, we can also let

o dilr
u = — v = (3.66)
or dy ax
1 difs difs
v, = ——— v, = —— (3.67)
roaf ar

where the stream function was previously defined in last sections. We know that by
defining the velocities in terms of the stream function, conservation of mass is identically

satisfied. If we now impose the condition of irrotationality, W, = 0.0, it follows that
au av

and in terms of the stream function

o o u‘f (} d u,"f)

or } dy ox dx
o= u." o u‘f
2

— =0

ax> (i}-‘

Thus, for a plane irrotational flow we can use either the velocity potential or the stream

function—both must satisfy Laplace’s equation in two dimensions. It is apparent from these

results that the velocity potential and the stream function are somehow related. We have pre-
viously shown that lines of constant s are streamlines; that is,

dy v
— — (3.68)
u

dx along if = constant
The change in ¢ as we move from one point (x,y) to a nearby point (x + dx, y + dy) is

given by the relationship b ac

dp = —dx + —dy =udx + vdy
dx dy

Along a line of constant ¢» we have d¢p = 0 so that

dy u
= - (3.69)
v

dx

along b = constant

A comparison of Eqs. 3.68 and 3.69 shows that lines of constant ¢ (called equipotential lines)
are orthogonal to lines of constant ¢ (streamlines) at all points where they intersect. (Recall
that two lines are orthogonal if the product of their slopes is minus one.) For any potential
flow field a *flow net” can be drawn that consists of a family of streamlines and equipoten-
tial lines. The flow net is useful in visualizing flow patterns and can be used to obtain graph-
ical solutions by sketching in streamlines and equipotential lines and adjusting the lines until
the lines are approximately orthogonal at all points where they intersect. An example of a
flow net is shown in Fig.3.8 . Velocities can be estimated from the flow net, since the ve-
locity is inversely proportional to the streamline spacing. Thus, for example, from Fig. 3.8
we can see that the velocity near the inside corner will be higher than the velocity along the
outer part of the bend.

Equipotential line
(¢ = constant)

J‘ dl >d
o

Vi<V

!
Streamline
{yr = constant)

1 l l m FIGURE 38 Flow net for a 90° bend.
(From Ref. 3, used by permission.)
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3.3.1 Uniform Flow:

The simplest plane flow is one for which the streamlines are all straight and parallel. and the
magnitude of the velocity is constant. This type of flow is called a uniform flow. For exam-
ple. consider a uniform flow in the positive x direction as is illustrated in Fig. 3.9 a . In this

instance, «# = U/ and v = 0, and in terms of the velocity potential
dch A
— = U — =0
ax dy

These two equations can be integrated to yield
¢ = Ux + C

where C is an arbitrary constant, which can be set equal to zero. Thus, for a uniform flow
in the positive x direction

¢ = Ux (3.70)
The corresponding stream function can be obtained in a similar manner, since
Wy
ay ox
and, therefore,
Y = Uy (3.71)

¥ v
.
z | e =
! =i
; P Y=
i i Y=ty
| |
i i Hm FIGURE 3.9
@& =g o = gz Uniform flow: (a) in the
x x x direction: (») in an ar-
(a) () bitrary direction. or.

These results can be generalized to provide the velocity potential and stream function
for a uniform flow at an angle « with the x axis, as in Fig. 6.165. For this case

¢ = U(xcos o + ysin a) (3.72)
and

3.3.2 Source and Sink:

Consider a fluid flowing radially outward from a line through the origin perpendicular to the
x—y plane as is shown in Fig.3.10 . Let m be the volume rate of flow emanating from the
line (per unit length), and therefore to satisfy conservation of mass

Yy = U(y cos a — xsin a) (3.73)

or (27 r)v, —m

v, =

[}

[I R

-
Also, since the flow is a purely radial flow, v, 0, the corresponding velocity potential can

be obtained by integrating the equations

deh o m 1 deb _
It follows that ar 27r r a6
b =—Inr (3.74)

aa
If m is positive, the flow is radially outward, and the flow is considered to be a source flow.
If 1 is negative, the flow is toward the origin, and the flow is considered to be a sink flow.
The flowrate, m., is the strength of the source or sink.

We note that at the origin where r = 0 the velocity becomes infinite, which is of course
physically impossible. Thus, sources and sinks do not really exist in real flow fields, and the
line representing the source or sink is a mathematical singularity in the flow field. However,
some real flows can be approximated at points away from the origin by using sources or
sinks. Also, the velocity potential representing this hypothetical flow can be combined with
other basic velocity potentials to describe approximately some real flow fields. This idea is
further discussed in Section 3.4 .
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w = constant e ¢ = constant
\\ P at™ /
P A
N
VAN N
/ ~ ! N

~ s B FIGURE310 The streamline pattern for a
- - source.

—_— —

The stream function for the source can be obtained by integrating the relationships

1 difs o e aafr .

to yleld 7(—39 - 2T ar -
=" 5 (3.75)

& 2ar
It is apparent from Eq. 3.75 that the streamlines (lines of ¢ = constant) are radial lines, and
from Eq. 3.74 the equipotential lines (lines of ¢» = constant) are concentric circles centered
at the origin.
Example 3.6:

A nonviscous, incompressible fluid flows between wedge-shaped walls into a small opening
as shown in Fig. E3.6. The velocity potential (in fths), which approximately describes this
flow is b= —21nr

Determine the volume rate of flow (per unit length) into the opening.

v

x B FIGURE E3.6

Solution

The components of velocity are

b
v, = _—_= -
ar

19 _

"v = =
S A T:

~ |3

which indicates we have a purely radial flow. The flowrate per unit width, ¢, crossing the
arc of length R7r/6 can thus be obtained by integrating the expression

~T/6 - TG 2
g = v,Rdez—l (—)Rdﬁz—

= —1.05 ft*/s (Ans)
J0 JO R

S

Note that the radius R is arbitrary since the flowrate crossing any curve between the two
walls must be the same. The negative sign indicates that the flow is toward the opening. that
is, in the negative radial direction.

3.3.3 Vortex:

We next consider a flow field in which the streamlines are concentric circles—that is. we
interchange the velocity potential and stream function for the source. Thus, let

¢ = K6 (3.76)
and .
= —Klnr (3.77)
where K is a constant. In this case the streamlines are concentric circles as are illustrated in
Fig.3.11 . with v, = O and 1 o¢h Al K
v, =t = 2 (3.78)
' roaf ar r
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This result indicates that the tangential velocity varies inversely with the distance from the
origin, with a singularity occurring at » = 0 (where the velocity becomes infinite).

It may seem strange that this vortex motion is irrotational (and it is since the flow field
is described by a velocity potential). However, it must be recalled that rotation refers to the
orientation of a fluid element and not the path followed by the element. Thus, for an irrota-
tional vortex, if a pair of small sticks were placed in the flow field at location A, as indicated
in Fig. 3.12 a, the sticks would rotate as they move to location B. One of the sticks, the one
that is aligned along the streamline, would follow a circular path and rotate in a counterclock-

¥ yr = constant

B FIGURE?311 The streamline pattern for
a vortex.
A %~
B —

B FIGURE?3.12
Motion of fluid ele-

r ment from A to B:
(a) for irrotational
(free) vortex; (b) for
rotational (forced)
vortex.

wise direction. The other stick would rotate in a clockwise direction due to the nature of the
flow field—that is, the part of the stick nearest the origin moves faster than the opposite end.
Although both sticks are rotating, the average angular velocity of the two sticks is zero since
the flow is irrotational.

It the fluid were rotating as a rigid body, such that vy = K;r where K, is a constant,
then sticks similarly placed in the flow field would rotate as is illustrated in Fig. 3.12 b. This
type of vortex motion is rofational and cannot be described with a velocity potential. The
rotational vortex is commonly called a forced vortex, whereas the irrotational vortex is usu-
ally called a free vortex. The swirling motion of the water as it drains from a bathtub is sim-
ilar to that of a free vortex, whereas the motion of a liquid contained in a tank that is rotated
about its axis with angular velocity @ corresponds to a forced vortex.

A combined vortex is one with a forced vortex as a central core and a velocity distri-
bution corresponding to that of a free vortex outside the core. Thus, for a combined vortex

and Uy = wr r=rp (3.79)

K
Vy = ? r > o (380}
where K and w are constants and r; corresponds to the radius of the central core.
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Circulation:
A mathematical concept commonly associated with vortex motion is that of circula-

tion. The circulation, I, is defined as the line integral of the tangential component of the ve-
locity taken around a closed curve in the flow field. In equation form, I' can be expressed as

1“:{1) V- ds (3.81)
JC

where the integral sign means that the integration is taken around a closed curve, C, in the
counterclockwise direction, and ds is a differential length along the curve as is illustrated in
Fig.3.13 . For an irrotational flow, V = V¢ so that V - ds = V¢ - ds = d¢ and. therefore,

F=<1> dp =0
Jc

This result indicates that for an irrotational flow the circulation will generally be zero. How-
ever, if there are singularities enclosed within the curve the circulation may not be zero. For
example, for the free vortex with v, = K/r the circulation around the circular path of radius

r shown in Fig. 3.14 is 2T

K
I' = T(r df) = 27K

Jo
which shows that the circulation is nonzero and the constant K = I'/27. However, the cir-
culation around any path that does not include the singular point at the origin will be zero.

Arbitrary
curve C

B FIGURE3.19 The notation for determining
circulation around closed curve C.

B FIGURE3.14 Circulation around various paths
in a free vortex.

This can be easily confirmed by evaluating the circulation around a closed path such as ABCD

of Fig. 3.14 , which does not include the origin.
The velocity potential and stream function for the free vortex are commonly expressed

. . s . : 1—‘
in terms of the circulation as b p (3.82)

and ' 2

r
= ——Inr (3.83)
The concept of circulation is often useful whefl evaluating the forces developed on bodies

immersed in moving fluids. This application is used in studying a uniform flow around a cylinder
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Example 3.7:
A liquid drains from a large tank through a small opening as illustrated in Fig. E3.7. A vor-
tex forms whose velocity distribution away from the tank opening can be approximated as

that of a free vortex having a velocity potential & — r 0
27

Determine an expression relating the surface shape to the strength of the vortex as specified
by the circulation I'.

AR B FIGURE E3.7

Solution:

Since the free vortex represents an irrotational flow field. the Bernoulli equation

V3 1%
& + 71 + zl — Q + =
Y 2g Y 2g

+ z>

can be written between any two points. If the points are selected at the free surface, p;, = p,
= 0. so that V2 V3

—— =z, + (D)
2g Y 2g
where the free surface elevation, z,. is measured relative to a datum passing through point (1).

The velocity is given by the equation 1 dcb T
v, = —— =
! r a6 2ar
We note that far from the origin at point (1). V, = v, = 0 so that Eq. 1 becomes
1"2
Lp = —————— (Ans)
Smr-g

which is the desired equation for the surface profile. The negative sign indicates that the sur-
face falls as the origin is approached as shown in Fig. E 3.7. This solution is not valid very
near the origin since the predicted velocity becomes excessively large as the origin is
approached.

3.3.4 Doublet:

The final, basic potential flow to be considered is one that is formed by combining a source

and sink in a special way. Consider the equal strength, source-sink pair of Fig.3.15 . The
combined stream function for the pair is m
© P b= —5 (61 — &)
o

B FIGURE 3.15 The combination of a
source and sink of equal strength located along
the x axis.

Source

I a 1= o |
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which can be rewritten as

Yarils tan §; — tan 6,
LA T 3.84
an( " ) an(#), 2) | + tan 6, tan 0, 8

From Fig.3.15 it follows that _ rsinf
tanf, = ———
rcos —a

and rsinf
tan ), = ————
rcost + a

These results substituted into Eq.3.84 give

(2?(&) 2ar sin 6
tan| — =

3 3
m re—a

y m t _1(2ar sin H) (3.85)
5= - an I — .
' 27 P - a
m 2arsinf  marsin 6

27 P — d w(r* — d°)
since the tangent of an angle approaches the value of the angle for small angles.

The so-called doublet is formed by letting the source and sink approach one another
(@ — 0) while increasing the strength m (m — =) so that the product ma/# remains constant.
In this case, since r/(r* — a*) — 1/r, Eq. 3.86 reduces to
Ksin

i = p (3.87)

where K, a constant equal to ma/, is called the strength of the doublet. The corresponding
velocity potential for the doublet is Y K cos 0

(3.88)
;

Plots of lines of constant s reveal that the streamlines for a doublet are circles through the
origin tangent to the x axis as shown in Fig.3.16 . Just as sources and sinks are not physi-
cally realistic entities, neither are doublets. However, the doublet when combined with other
basic potential flows provides a useful representation of some flow fields of practical inter-
est. For example, we will determine in Section 3.4  that the combination of a uniform flow
and a doublet can be used to represent the flow around a circular cylinder. Table 3.1 pro-
vides a summary of the pertinent equations for the basic, plane potential flows considered in
the preceding sections.

so that

For small values of a

(3.86)

}Z‘

B FIGURES3.16 Streamlines for a
doublet.
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m TABLE 31
Summary of Basic, Plane Potential Flows.

Description of Velocity
Flow Field Velocity Potential Stream Function Components™
Uniform flow at ¢ = Ulxcos o + ysin ) v = U(vcos o« — x sin &) u = Ucos a
angle « with the x v = Usinao

axis (see fig.3.9 b)

Source or sink b — " | _m 0 L m
(see fig3.10 ) T P ¥= 27 [y
m = 0 source o = 0
m << 0 sink “
Free vortex _ . r .
(see fig. 3.11 ) b =5—" = —5—Inr v, =0
' =0 r
counterclockwise v, = Sy
motion o
I' << 0
clockwise motion
Doublet K cos # K sin f K cos 6
(see fig.3.16 ) = E— U= - U= —
s

K sin #

CVy = ———>
)

“Welocity components are related to the velocity potential and stream function through the relationships:
ey i Ay dulr Aely 1l 1 s Al

= = = = — = = = = —

_ vy = — - =
ax ay iy ax ’ ar r ad Y e a0 ar

3.4 Superposition of Basic, Plane Potential Flows

As was discussed in the previous section, potential flows are governed by Laplace’s equa-
tion, which is a linear partial differential equation. It therefore follows that the various basic
velocity potentials and stream functions can be combined to form new potentials and stream
functions. (Why is this true?) Whether such combinations yield useful results remains to be
seen. It is to be noted that any streamline in an inviscid flow field can be considered as a
solid boundary, since the conditions along a solid boundary and a streamline are the same—

that is, there is no flow through the boundary or the streamline. Thus, if we can combine
some of the basic velocity potentials or stream functions to yield a streamline that corre-
sponds to a particular body shape of interest, that combination can be used to describe in de-
tail the flow around that body. This method of solving some interesting flow problems, com-
monly called the method of superposition, is illustrated in the following three sections.

3.4.1 Source in a Uniform Stream—Half-Body

Consider the superposition of a source and a uniform flow as shown in Fig. 3.17a. The

resulting stream function is B = Pomitorm flow T Peouree
by
= Ursinf + —6 (3.89)
and the corresponding velocity potential is =
I
¢ = Urcosf + —lInr (3.90)

o
It is clear that at some point along the negative x axis the velocity due to the source will just

cancel that due to the uniform flow and a stagnation point will be created. For the source
I
alone v =

r

2ar
: . . m
so that the stagnation point will occur at x = —b where U = Py
i T
or b (3.91)

T 27U
The value of the stream function at the stagnation point can be obtained by evaluating
dr at r = b and # = 77, which yields from Eq. 3.89

i Hl
; . =
# stagnation

® 2
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u ¥ yr = bl
Stagnation point

Stagnation /‘

. point , ﬁ

(a) (B)

B FIGURE 3.17 The flow around a half-body: (a) superposition of a source and a uni-
form flow; (b) replacement of streamline iy = 7bU with solid boundary to form half-body.

Since m/2 = wbU (from Eq.3.91 ) it follows that the equation of the streamline passing
through the stagnation pointis ;17 — [7rsin 8 + bUB
. Gl (3.92)
sin 6

where # can vary between 0 and 27r. A plot of this streamline is shown in Fig. 3.17b. If we
replace this streamline with a solid boundary, as indicated in the figure, then it i8 clear that
this combination of a uniform flow and a source can be used to describe the flow around a
streamlined body placed in a uniform stream. The body is open at the downstream end, and
thus is called a half-body. Other streamlines in the flow field can be obtained by setting v =
constant in Eq.3.89 and plotting the resulting equation. A number of these streamlines are
shown in Fig. 3.17 b. Although the streamlines inside the body are shown, they are actually
of no interest in this case, since we are concerned with the flow field outside the body. It
should be noted that the singularity in the flow field (the source) occurs inside the body, and
there are no singularities in the flow field of interest (outside the body).

The width of the half-body asymptotically approaches 2wb. This follows from
Eqg. 3.92 . which can be written as y = f)(w _ 9)

so that as 8 —0 or 6§ — 27 the half-width approaches = bs. With the stream function (or
velocity potential) known, the velocity components at any point can be obtained. For the half-
body, using the stream function given by Eq.3.89 |

1 difs m
v,=———=Ucosf +
and roaf 27r
difs .
v, = —= —Usin#
' ar

Thus, the square of the magnitude of the velocity, V, at any point is

R 5 Umcost m \?
Vi=wv+v;, = U+ +
wr 27r

= b2

==l ]

and since b = m/27U / b2
7 o

Ve = U2<1+2?cosf)+—,) (393 )
2

With the velocity known, the pressure at any point can be determined from the Bernoulli

equation, which can be written between any two points in the flow field since the flow is

irrotational. Thus, applying the Bernoulli equation between a point far from the body, where

the pressure is py and the velocity is U, and some arbitrary point with pressure p and veloc-
ity V, it follows that po + %pUZ =p+ %p‘i/z (394 )
where elevation changes have been neglected. Equation 6.101 can now be substituted into

Eq. 3.94 to obtain the pressure at any point in terms of the reference pressure, p,, and the
upstream velocity, U.

Dr. Mohsen Soliman -32-



This relatively simple potential flow provides some useful information about the flow
around the front part of a streamlined body, such as a bridge pier or strut placed in a uni-
form stream. An important point to be noted is that the velocity tangent to the surface of the
body is not zero: that is, the fluid “slips™ by the boundary. This result is a consequence of
neglecting viscosity, the fluid property that causes real fluids to stick to the boundary, thus
creating a “no-slip” condition. All potential flows differ from the flow of real fluids in this
respect and do not accurately represent the velocity very near the boundary. However, out-
side this very thin boundary layer the velocity distribution will generally correspond to that
predicted by potential flow theory if flow separation does not occur. Also, the pressure dis-
tribution along the surface will closely approximate that predicted from the potential flow
theory, since the boundary layer is thin and there is little opportunity for the pressure to vary
through the thin layer. In fact, as discussed in more detail in Part (4) . the pressure distri-
bution obtained from potential flow theory is used in conjunction with viscous flow theory
to determine the nature of flow within the boundary layer.

Example 3.8:

The shape of a hill arising from a plain can be approximated with the top section of a half-
body as is illustrated in Fig. E3.8. The height of the hill approaches 200 ft as shown. (a) When
a 40 mi/hr wind blows toward the hill, what is the magnitude of the air velocity at a point
on the hill directly above the origin [point (2)]1? (b) What is the elevation of point (2) above
the plain and what is the difference in pressure between point (1) on the plain far from the
hill and point (2)? Assume an air density of 0.00238 slugs/ft>.

40 mifhr
—
—
—
€1y »
s B FIGURE E 3.8
Solution
2
() The wvelocity is given by Eq. 3.93 as Vv = U2<1 -+ 2£cos f + b2
r IS
At point (2). # = 7/2. and since this point is on the surface (Eq. 3.92 )
b — 68) b
= = 1)
Thus. b2 sin ¢ 2
g = 2 -+ )
Ve v [ ! (wb/zy}
= 72 (1 -+ 42>
and the magnitude of the velocity at (2) for a 40 mi/hr approaching wind is
A N2
Vs = (l -+ 2) (40 mi/hr) = 47.4 mi/hr (Ans)
b
(b) The elevation at (2) above the plain is given by Eq. 1 as Vo = >
Since the height of the hill approaches 200 ft and this height is equal to 6. it follows
that 200 ft
N 100 ft (Ans)
From the Bernoulli equation (with the ;-‘ axis the vertical axis)
Vi V3
Py Ve P VB
so that v 2g - Y 2 o=
P 2 2
P P = ;(Vﬁ — VD + vz — 1)
and with - .
5280 ft/mi
V, = (40 mi/hr) (7/) = 58.7 ft/s
and 3600 s/hr
5280 ft/mi
V, = (47.4 mi/hr) (7/> = 69.5 ft/s
it follows that 3600 s/hr
(0.00238 slugs/ft®) 5 S
PL— P2 = 5 [(69.5 ft/s) — (58.7 ft/s)"]

“+ (0.00238 slugs/ft7)(32.2 ft/s2)(100 ft — O ft)
= 9.31 Ib/ft> = 0.0647 psi (Ans)

This result indicates that the pressure on the hill at point (2) is slightly lower than the
pressure on the plain at some distance from the base of the hill with a 0.0533 psi dif-
ference due to the elevation increase and a 0.01 14 psi difference due to the velocity
increase.

The maximum velocity along the hill surface does not occur at point (2) but farther
up the hill at 8 = 63°. At this point V , .. = 1.26U (Problem 6.55). The minimum ve-
locity (V = 0) and maximum pressure occur at point (3). the stagnation point.
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Some Notes on the case of Rankine Half-body:

If the origin contains a source. a plane half-body is formed with its nose to
the left, as in Fig.3.184. It the origin is a sin/k, rm =< 0, the half-body nose is to
the right. as in Fig.3.18c. In either case the stagnation point is at a position

a = m/U . away from the origin.

U, (max) =126 L7, Laminar separation

W= + T

[

W= —TCm

() (c)
Fig.3.18 The Rankine half-body;
pattern (¢) is not found in a real
fluid because of boundary-layer
separation: (a) uniform stream plus
a source equals a half-body; stagna-
tion point at x = —a = —m/U..; (b)
slight adverse gradient for s/a (5)
greater than 3.0: no separation; (¢)
uniform stream plus a sink equals
the rear of a half-body: stagnation
point at x = a = m/U..; (d) strong
adverse gradient for s/a > —3.0:
separation.

()

Boundary Layer Separation on Rankine half-body:

Although the inviscid-flow patterns, Fig.3.18 a and ¢, are mirror images, their viscous
(boundary-layer) behavior is different. The body shape and the velocity along the sur-
face are repeated here

2 ~ 4 y T —
V: = Ui( 1 + % 4+ =4 cos 9) along r= mm — 0) (3.95)

¥ r U.. sin 0

',

The computed surface velocities are plotted along the half-body contours in Fig.3.18)H
and d as a function of arc length s/a measured from the stagnation point. These plots
are also mirror images. However, if the nose is in front, Fig.3.185, the pressure gradi-
ent there is favorable (decreasing pressure along the surface). In contrast, the pressure
gradient is adverse (increasing pressure along the surface) when the nose is in the rear,
Fig.3.18d, and boundary-layerseparation may occur. Application to Fig.3.18 ) of laminar
boundary reveals that separation does not occur on the front nose of the half-body.
Therefore Fig.3.18a is a very realistic picture of streamlines past a half-body nose. In
contrast, when applied to the tail, Fig.3.18 ¢, Thwaites’ method predicts separation at
about s/a = — 2.2, or § = 110°. Thus, if a half-body is a solid surface, Fig.3.18c is nor
realistic and a broad separated wake will form. However, if the half-body tail is a fluid
line separating the sink-directed flow from the outer stream, as in Example 3.9 | then
Fig.3.18c is quite realistic and useful. Computations for turbulent boundary-layer the-
ory would be similar: separation on the tail, no separation on the nose.
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An offshore power plant cooling-water intake sucks in 1500 ft'/s in water 30 ft deep. as in Fig.
3.9 . If the tidal velocity approaching the intake is 0.7 ft/s, (@) how far downstream does the in-

Example 3.9:
take effect extend and (b) how much width L of tidal flow is entrained into the intake?

e Half-body
|5 shape
- Solution
. Intake a?
N7 Recall that the sink strength m is related to the volume flow @ and the depth b into the paper
1 1 ob
TN Q1500 ft¥s )
- 1500 ft3/s m=%=m= 1.96 ft*/s
e Therefore from Fig3.18the desired lengths a and L are
= . 2
do7us Top view a= éi - % =114 ft Ans. (a)
E3.9 L=2ma=2m(114 0 =Tl fi Ans. (b)

Example 3.10:

The bottom of a river has a 4-m-high bump which approximates a Rankine haltf-body, as in
Fig. E3.10. The pressure at point B on the bottom is 130 kPa, and the river velocity is
2.5 m/s. Use inviscid theory to estimate the water pressure at point A on the bump, which is
2 m above point B.

Water at 20°C

2.5 m/s 4 m
2m
E3.10 i
B ____________________
0

Solution

As in all inviscid theories, we ignore the low-velocity boundary layers which form on solid sur-
faces due to the no-slip condition. From Eq. ( 3.91 ) and Fig.3.17 . the downstream bump half-
height equals ra. Therefore, for our case, @ = (4 m)/7r = 1.27 m. We have to find the spot where
the bump height is half that much, 7 = 2 m = 7a/2. From Eq. ( 3.91 ) we may compute

a7 — 6)

SO =7 _ g0°
<in 0 5 a or [} 90

r=hy = 5

Thus point A in Fig. E3.10 is directly above the (initially unknown) origin of coordinates (la-
beled © in Fig. E3.10) and is 1.27 m to the right of the nose of the bump. With » = 77a/2 and
6 = /2 known, we compute the velocity at point A:

2
a 2a
731:';!2)2 + Tral2 cos g] = 1.405U7

Vi= Uz[l + 1

or Vy= 1.185U = 1.185(2.5 m/s) = 2.96 m/s

For water at 20°C, take p = 998 kg/m” and y = 9790 N/m”. Now, since the velocity and eleva-
tion are known at point A, we are in a position to use Bernoulli’s inviscid, incompressible-flow
equation to estimate p, from the known properties at point B (on the same streamline):

pay Vi, _pe Vi,
Y 2g y  2g
Pa (2.96 m/s)’ __ 130,000 | (2.5)°
or 9700 N/m® T 2081 mis5) T2 ™~ “o700 208 T 0
Solving, we find Pa = (13.60 — 2.45)9790) = 109,200 Pa Ans.

If the approach velocity is uniform, this should be a pretty good approximation, since water is
relatively inviscid and its boundary layers are thin.

Dr. Mohsen Soliman -35-



3.4.2 A sink plus a Vortex at the Origin:

An interesting flow pattern, approximated in nature, occurs by superposition of a sink
and a vortex, both centered at the origin. The composite stream function and velocity
potential are

Sink plus vortex: Y=mb— Klnr d=mlInr+ K6 ( 3.96 )

When plotted, these form two orthogonal families of logarithmic spirals, as shown in
Fig.3.19 . This is a fairly realistic simulation of a tornado (where the sink flow moves
up the z-axis into the atmosphere) or a rapidly draining bathtub vortex. At the center
of a real (viscous) vortex, where Eq. (3.96 ) predicts infinite velocity, the actual cir-
culating flow is highly rotational and approximates solid-body rotation vy = Cr.

Fig. 3.19 Superposition of a sink
plus a vortex, Eq. (3.96 ), simu-
lates a tornado.

3.4.3 Flow Past a Vortex:

Consider a uniform stream U, in the x direction flowing past a vortex of strength K
with center at the origin. By superposition the combined stream function is

"!f = l}rfstream + '-!’vortex = U'Jcr Sil] 8 - K ln r (39?)
The velocity components are given by
vrzla—"b=chosB vﬁ.:—%:—UisinﬂﬂLE (3.98)
r d6 dar r

The streamlines are plotted in Fig.3.20 by the graphical method, intersecting the cir-
cular streamlines of the vortex with the horizontal lines of the uniform stream.

By setting v, = vy = 0 from (3.98) we find a stagnation point at § = 90°, r = a =
K/U_, or (x, v) = (0, a). This is where the counterclockwise vortex velocity K/r ex-
actly cancels the stream velocity U..

Probably the most interesting thing about this example is that there is a nonzero lift
force normal to the stream on the surface of any region enclosing the vortex, but we
postpone this discussion until the next section.
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Fig.3.20Flow of a uniform stream past a vortex constructed by the
graphical method.

3.4.4 An Infinite Row of Vortices:

Consider an infinite row of vortices of equal strength K and equal spacing a. as in Fig.
3.21a.This case is included here to illustrate the interesting concept of a vorfex sheer.

For a single line vortex, the stream function is = - K In r, where r is measured from the origin.
From this equation, . the ith vortex in Fig.3.21a has a stream function i, = —K In r;,
so that the total infinite row has a combined stream function
W= —K z In 7, (3.99)
i=1
It can be shown [2, sec. 4.51] that this infinite sum of logarithms is equivalent to a
closed-form function 1 D ary Iy
= —3K In [— (-::osh — Ccos )] (3.100)
2 a a
Since the proof uses the complex variable z = x + /v, i =(—1)"%, we are not going to
{x. ¥) 2
ith
WO tex
K K K K K K K
(@) - f o o o o o N
R S S '\-lf o S S S
| e | &« | a ' a | a | a | a |

7N 7NN
NEZNE NSNS NSNS IANTIANE Y

w=—nk/a

w=+mnk/ a

Fig.3 21 Superposition of vortices: (a) an infinite row of equal strength;
(&) streamline pattern for part (a): (c) vortex sheet: part (&) viewed from afar.
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The streamlines from Eq. (3.100) are plotted in Fig 3.21 5, showing what is called a
car’s-eye pattern of enclosed flow cells surrounding the individual vortices. Above the
cat’s eyes the flow is entirely to the left, and below the cat’s eyes the flow is to the
right. Moreover, these left and right flows are uniform if |yv| > «. which follows by dif-
ferentiating Eq. (3.100) Aifs _ _ iﬂ (3.101)

ay |vl=a a
where the plus sign applies below the row and the minus sign above the row. This uni-
form left and right streaming is sketched in Fig. 3.21c. We stress that this effect is in-
duced by the row of vortices: There is no uniform stream approaching the row in this
example.

When Fig.3.210 is viewed from afar., the streaming motion is uniform left above and
uniform right below, as in Fig.3.21 ¢, and the vortices are packed so closely together

3.4.5 The Vortex Sheet:

When Fig.3.21b is viewed from afar. the streaming motion is uniform left above and
uniform right below, as in Fig.3.21¢, and the vortices are packed so closely together
that they are smudged mnto a continuous vorfex sfieetf. I'he strength of the sheet 1s de-
A as 20K

fined as y = 7 (3.102)

a

and in the general case y can vary with x. The circulation about any closed curve which
encloses a short length dx of the sheet would be,

2 [
dI" = wy dx — u, dx = (u; — u,,) dx = 27K dx = ydx (3.103)
el

where the subscripts / and # stand for lower and upper, respectively. Thus the sheet
strength v = dI'/dx is the circulation per unit length of the sheet. Thus when a vortex
sheet is immersed in a uniform stream, 7y is proportional to the lift per unit length of
any surface enclosing the sheet.

Note that there is no velocity normal to the sheet at the sheet surface. Therefore a
vortex sheet can simulate a thin-body shape, e.g.. plate or thin airfoil. This is the ba-
sis of the thin-airfoil theory mentioned in last section of this part.

3.5 Rankine Ovals:

The half-body described in the previous section is a body that is “open™ at one end. To study
the flow around a closed body a source and a sink of equal strength can be combined with
a uniform flow as shown in Fig. 3.22 a. The stream function for this combination is

&

) m
= Ursinf — — (8, — 62) (3.104)
and the velocity potential is M
¢ = Urcos6 — —(Inr; — Inry) (3.105)

- di

As discussed in Section 3.3.4 | the stream function for the source-sink pair can be expressed
as in Eq.3.85 and, therefore, Eq. 3.104 can also be written as

. it o 2ar sin @
1
fr = Ursin 6 tan 5 5
r

or 2T —
W = Uy — — tan™! <L> (3.106)
' ; 297 X+ v —a?
The corresponding streamlines for this flow field are obtained by setting » = constant. If
several of these streamlines are plotted, it will be discovered that the streamline v = O forms

a closed body as is illustrated in Fig. 3.22 #. We can think of this streamline as forming the
surface of a body of length 2€ and width 2/ placed in a uniform stream. The streamlines in-
side the body are of no practical interest and are not shown. Note that since the body is
closed, all of the flow emanating from the source flows into the sink. These bodies have an
oval shape and are termed Rankine ovals.

Stagnation points occur at the upstream and downstream ends of the body as are indi-
cated in Fig.3.22 b. These points can be located by determining where along the x axis the
velocity is zero. The stagnation points correspond to the points where the uniform velocity,
the source velocity. and the sink velocity all combine to give a zero velocity. The location
of the stagnation points depend on the value of a, m. and U. The body half-length. ¢ (the

value of |x| that gives V = 0 when v = 0). can be expressed as
P (ma N z)lﬂ R,
C = a .
wU
or :
€ m 12
£ _ T (3.108)
a wUa
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(a) (b)

B FIGURE 322 The flow around a Rankine oval: (a) superposition of source-sink pair
and a uniform flow; (b) replacement of streamline ¥ = 0 with solid boundary to form Rankine
oval.

The body half-width, h, can be obtained by determining the value of y where the y axis in-
tersects the ¢y = 0 streamline. Thus, from Eq. 3.106 with 4y = 0,x = 0, and y = h, it fol-

lows that W—-a 27U
h = tan (3.109)
or 2a m

h 1[[(h) aUa\h
—:—K ) l]tan{ ( )—] (3.110)
da 2 1\d m /a

Equations 3.108 and 3.110 show that both {/a and h/a are functions of the dimensionless
parameter, 7w Ua/m. Although for a given value of Ua/m the corresponding value of €/a can
be determined directly from Eq.3.108 , #/a must be determined by a trial and error solution
of 3.110 .

A large variety of body shapes with different length to width ratios can be obtained by
using different values of Ua/m. As this parameter becomes large, flow around a long slen-
der body is described, whereas for small values of the parameter, flow around a more blunt
shape is obtained. Downstream from the point of maximum body width the surface pressure
increases with distance along the surface. This condition (called an adverse pressure gradi-
ent) typically leads to separation of the flow from the surface, resulting in a large low pres-
sure wake on the downstream side of the body. Separation is not predicted by potential theory
(which simply indicates a symmetrical flow) and, therefore, the potential solution for the
Rankine ovals will give a reasonable approximation of the velocity outside the thin, viscous
boundary layer and the pressure distribution on the front part of the body only.

Table 3.2 Rankine-Oval Parameters

m/(U .a) hia Lia L/l [T — E
0.0 0.0 1.0 &6 1.0
0.01 0.031 1.010 32.79 1.020
0.1 0.263 1.095 4.169 1.187
1.0 1.307 1.732 1.326 1.739

10.0 4.435 4.583 1.033 1.968
100.0 14.130 14.177 1.003 1.997
oo = o 1.000 2.000
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3.6 Flow Around a Circular Cylinder

As was noted in the previous section, when the distance between the source-sink pair ap-
proaches zero, the shape of the Rankine oval becomes more blunt and in fact approaches a
circular shape. Since the doublet described in Section 3.3.4 was developed by letting a source-
sink pair approach one another, it might be expected that a uniform flow in the positive x di-
rection combined with a doublet could be used to represent flow around a circular cylinder.
This combination gives for the stream function

= Ursinf —

’ (3.111)
and for the velocity potential K cos 6
¢ = Urcost + cos 6.112 )

B
In order for the stream function to represent flow around a circular cylinder it is necessary
that ¢/ = constant for r = a, where a is the radius of the cylinder. Since Eq. 3.111 can be

T K
written as b = (U B _z)r sin 0
P
it follows that 4 = 0 for r = a if K

Ksin#

2_

a

which indicates that the doublet strength, K, must be equal to Ua®. Thus, the stream func-
tion for flow around a circular cylinder can be expressed as

P
= Ur(l ——2>sinf) (3.113)
and the corresponding velocity potential is "
&
¢ = Ur(l +—2)c059 (3.114)
r

A sketch of the streamlines for this flow field is shown in Fig.3.23 .
The velocity components can be obtained from either Eq.3.113 or 3.114 as

a1 o U(l az) 4 (3115)
vV =—=———= — — I .
and " ar  ro# r €0
| ad Oils :
fuﬂz—(_—'z —(_—'= —U(l +a—,,>sin(9 (3.116)
roof ar re

On the surface of the cylinder (r = a) it follows from Eq.3.115 and 3.116 that v, = 0 and

vy, = —2Usin 6
We observe from this result that the maximum velocity occurs at the top and bottom of the
cylinder (f = *=/2) and has a magnitude of twice the upstream velocity, U. As we move
away from the cylinder along the ray # = 77/2 the velocity varies, as is illustrated in Fig. 3.23 .
The pressure distribution on the cylinder surface is obtained from the Bernoulli equa-
tion written from a point far from the cylinder where the pressure is p, and the velocity is

: 1 2 | 2
U'so that po + 3pU° = p, + 3p0j,

where p, is the surface pressure. Elevation changes are neglected. Since v,, = —2U sin 6,
the surface pressure can be expressed as

P, = po + 3pU(1 — 4sin’ 6) (3.117)
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FI1GURE 3.23 The flow around a circular cylinder.
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A comparison of this theoretical, symmetrical pressure distribution expressed in dimension-
less form with a typical measured distribution is shown in Fig.3.24 . This figure clearly reveals
that only on the upstream part of the cylinder is there approximate agreement between the
potential flow and the experimental results. Because of the viscous boundary layer that de-
velops on the cylinder, the main flow separates from the surface of the cylinder, leading to
the large difference between the theoretical, frictionless fluid solution and the experimental
results on the downstream side of the cylinder .
The resultant force (per unit length) developed on the cylinder can be determined by
integrating the pressure over the surface. From Fig.3.25 it can be seen that

r 2T

F.= —l p, cos B adb (3.118)
Jo

X
and

r 27
F, = —l p, sin B a df (3.119)
Jo
where F, is the drag (force parallel to direction of the uniform flow) and F is the /ift (force
perpendicular to the direction of the uniform flow). Substitution for p; from Eq. 3.117 into
these two equations, and subsequent integration, reveals that £, = 0 and F, = 0 (Problem

3.64). These results indicate that both the drag and left as predicted by poténtial theory for
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FI1GURE 3.25 The notation for determining
lift and drag on a circular cylinder.

a fixed cylinder in a uniform stream are zero. Since the pressure distribution is symmetrical
around the cylinder, this is not really a surprising result. However, we know from experience
that there is a significant drag developed on a cylinder when it is placed in a moving fluid.
This discrepancy is known as d’Alembert’s paradox. The paradox is named after Jean le
Rond d’Alembert (1717-1783), a French mathematician and philosopher, who first showed
that the drag on bodies immersed in inviscid fluids is zero. It was not until the latter part of
the nineteenth century and the early part of the twentieth century that the role viscosity plays
in the steady fluid motion was understood and d’Alembert’s paradox explained..

Example 3.11:

When a circular cylinder is placed in a uniform stream, a stagnation point is created on the
cylinder as is shown in Fig.E3.11a. If a small hole is located at this point, the stagnation pres-
sure, Py, can be measured and used to determine the approach velocity, U. (a) Show how
Psiag and U are related. (b) If the cylinder is misaligned by an angle « (Fig.E3.11b), but the
measured pressure still interpreted as the stagnation pressure, determine an expression for
the ratio of the true velocity, U, to the predicted velocity, U’. Plot this ratio as a function of
« for the range —20° = a = 20°.

[ U
— —_—
—_— —
—_— —_—
—_— P —_— C
—_— ~§\ —_— B
J——— a — i
— —_—
—_— . —_— —
Stagnation
—_— point —_— >
(a) (b) (d)
1.5
1.4
v 1.3
U 1.2
1.1
1.0
o 20 ~1o- 0° Tor 50° B FIGURE E31
o
Solution

(a) The velocity at the stagnation point is zero so the Bernoulli equation written between
a point on the stagnation streamline upstream from the cylinder and the stagnation point

gives Po 4 E _ Pstag
2
Thus, Y o) 8 Y 1/2
U= [E (pstag - P'U)j| (Ans)

A measurement of the difference between the pressure at the stagnation point and the
upstream pressure can be used to measure the approach velocity. This is, of course, the
same result that was obtained for Pitot-static tubes.

(b) If the direction of the fluid approaching the cylinder is not known precisely, it is pos-
sible that the cylinder is misaligned by some angle, «. In this instance the pressure ac-
tually measured, p,. will be different from the stagnation pressure, but if the misalign-
ment is not recognized the predicted approach velocity, U, would still be calculated as
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2 L2
U = [;(Pﬂ - Po)}

Thus,
Ultrue) (pmg — pﬂ)l/l :
U'(predicted)  \ P. — Po ‘)
The velocity on the surface of the cylinder, vy, where r = a. is obtained from Eq. 6.115
as Vg = —2Usin 6
If we now write the Bernoulli equation between a point upstream of the cylinder and
the point on the cylinder where r = a. 6 = «, it follows that
1 - 1 . 2
po + 5 pU” = p, + ;p(—?U sin «)”
and, therefore, = ) P . o
Po — Po = zpU(1 — 4 sin“«) (2)
Since p... — Pn = %p U? it follows from Eqgs. 1 and 2 that
Ul(true) 5 1m
- - = (1 — 4 sin“a)”? (Ans)
U'(predicted)

This velocity ratio is plotted as a function of the misalignment angle « in Fig. E6.8c.

It is clear from these results that significant errors can arise if the stagnation pres-
sure tap is not aligned with the stagnation streamline. As is discussed in Section 3.5, if
two additional, symmetrically located holes are drilled on the cylinder, as are illustrated
in Fig. E6.8d. the correct orientation of the cylinder can be determined. The cylinder is
rotated until the pressure in the two symmetrically placed holes are equal, thus indi-
cating that the center hole coincides with the stagnation streamline. For 8 = 30° the
pressure at the two holes theoretically corresponds to the upstream pressure, p,. With
this orientation a measurement of the difference in pressure between the center hole
and the side holes can be used to determine U.

3.7 Flow Around a Cylinder with Circulation:

An additional, interesting potential flow can be developed by adding a free vortex to
the stream function or velocity potential for the flow around a cylinder. In this case
we add a vortex at the doublet center, which does not change the shape of the cylinder.

the stream function for flow past a circular cylinder with circulation, centered
at the origin, is a uniform stream plus a doublet plus a vortex
A sin 6

= U.rsin 6 — — - K In r + const 6.120)

The doublet strength A has units of velocity times length squared. For convenience, let
A = U.a®, where a is a length, and let the arbitrary constant in Eq. (3.120 equal
K In a. Then the stream function becomes

) ) a .
= Uy, sin 0| r — — :| — K In

r

— (3.121
[#

The streamlines are plotted in Fig.3.26 for four different values of the dimension-

less vortex strength K/(U..a). For all cases the line ¢ = 0 corresponds to the circle r =
a. that is, the shape of the cylindrical body. As circulation I' = 27K increases, the ve-
locity becomes faster and faster below the cylinder and slower and slower above it.
The velocity components in the flow are given by

1 9 . ' a’
v, = r—aB—UIuDsﬁ(l rQ)
) ' 6.122)
) : 2
U.gz—a—l;f:—UIsInﬂ(l+22—)+£

r r r

The velocity at the cylinder surface » = a is purely tangential, as expected
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Fig.3.26 Flow past a circular
cylinder with circulation for values
of KI(U..a) of (a) 0, (b) 1.0, (¢)
2.0, and (d) 3.0.

, K
v(r=a)=0 vgr=a)=—-2U.sin 6 +— 8.123)
a
For small K, two stagnation points appear on the surface at angles #;, where v,z = 0, or,

from Eq. (3.123),

sin B, = (3.124)

2U..a
Figure3.26 a 1s for K = 0, 6, = 0 and 180°, or doubly symmetric inviscid flow past a
cylinder with no circulation. Figure3.26 b is for K/(U..a) = 1, 6, = 30 and 150°, and
Fig. 3.26 ¢ is the limiting case where the two stagnation points meet at the top,
Ki(U..a) = 2, 6, = 90°.
For K = 2U _.a, Eq. (3.124) is invalid, and the single stagnation point is above the
cylinder, as in Fig.3.26 . at a point y = /i given by

L= B+ B4 B=

a 2

K
=2 .
U_a (3.129

In Fig.3.26 d, K/(U..a) = 3.0, and h/a = 2.6.

For the cylinder tflows of Fig. 3.26 b to d there is a downward force, or negative lift,
called the Magnus effect, which is proportional to stream velocity and vortex strength.
We can see from the streamline pattern that the velocity on the top of the cylinder is
less and therefore the pressure higher from Bernoulli’s equation; this explains the force.
There i1s no viscous force, of course, because our theory is inviscid.

The surface velocity is given by Eq. (3.123). From Bernoulli’s equation , neglecting
gravity, the surface pressure p; is given by

P + 1 pUz = p, + 1 p(—ZUx sin 6 + E)L
2 2 a

or Py = P + 2pU%L(1 — 4 sin® @ + 48 sin 8 — B°) (3.126)

where B = K/(U.a) and p.. is the free-stream pressure. If b is the cylinder depth into
the paper, the drag D is the integral over the surface of the horizontal component of
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pressure force
~2ar
] (P — P=) cos 6 ba dO

Yo
where p, — p. is substituted from Eq. (3.126). But the integral of cos € times any power
of sin # over a full cycle 27 is identically zero. Thus we obtain the (perhaps surpris-
ing) result D(cylinder with circulation) = 0 (3.127)

This is a special case of d” Alembert’s paradox,

According to inviscid theory, the drag of any body of any shape immersed in a uni-

form stream 1is identically zero.

D’ Alembert published this result in 1752 and pointed out himself that it did not square
with the facts for real fluid flows. This unfortunate paradox caused everyone to over-
react and reject all inviscid theory until 1904, when Prandtl first pointed out the pro-
found effect of the thin viscous boundary layer on the flow pattern in the rear

The lift force L normal to the stream. taken positive upward, is given by summa-
tion of vertical pressure forces

; _l-zw

(Ps — P=) sin 6 ba do

=0

The Kutta-Joukowiski Lift Theorem:

Since the integral over 24t of any odd power of sin @ is zero, only the third term in the
parentheses in Eq. (3.126) contributes to the lift:

1 2
_ —— 5
L 5 pU=

ba

l-Z‘:r
oo “0

U sin? 8 d6 = —pU_.(27K)b
£

I
or — = —pU_TI (3.128)

)
Notice that the lift is independent of the radius a of the cylinder. Actually, though, as
we shall see in Sec. 3.7 ., the circulation I depends upon the body size and orientation
through a physical requirement.
Equation (3.128) was generalized by W. M. Kutta in 1902 and independently by N.
Joukowski in 1906 as follows:
According to inviscid theory, the lift per unit depth of any cylinder of any shape im-
mersed in a uniform stream equals ;_'ur,,l—', where I is the total net circulation con-
tained within the body shape. The direction of the lift is 90° from the stream di-

rection, rotating opposite to the circulation.

The problem in airfoil analysis, Sec. 3.7, is thus to determine the circulation I' as a
function of airfoil shape and orientation.

Experimental Lift and Drag of Rotating Cylinder:

It is nearly impossible to test Fig.3.26 by constructing a doublet and vortex with the
same center and then letting a stream flow past them. But one physical realization
would be a rotating cylinder in a stream. The viscous no-slip condition would cause
the fluid in contact with the cylinder to move tangentially at the cylinder peripheral
speed vy = aw. A net circulation I' would be set up by this no-slip mechanism. but it
turns out to be less than 350 percent of the value expected from inviscid theory, pri-
marily because of flow separation behind the cylinder.

Figure 3.27 shows experimental lift and drag coefficients, based on planform area
2ba, of rotating cylinders. From Eq. (3.127) the theoretical drag is zero, but the actual
Cp is quite large, more even than the stationary cylinder .The theoretical lift follows
from Eq. (3.128) L 2mpU..Kb 27 vUgs

L= 1pUZ(2ba)y  pUzba U,
where vy, = K/a is the peripheral speed of the cylinder.

Figure 3.27 shows that the theoretical lift from Eq. (3.129) is much too high, but the
measured lift is quite respectable. much larger in fact than a typical airfoil of the same
chord length . Thus rotating cylinders have practical possibilities.

Flettner rotor ship built in Germany in 1924 employed rotating vertical cylinders which
developed a thrust due to any winds blowing past the ship. The Flettner design did not
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gain any popularity, but such inventions may be more attractive in this era of high en-

ergy costs.
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Fig. 3.27 Theoretical and experi-
mental lift and drag of a rotating
cvlinder. ( From Ref. 22.) (4] | | |
L8] 2 <4 (&3 =

Welocity ratio ;—C’)

Example 3.12:
The experimental Flettner rotor sailboat at the University of Rhode Island is shown in Fig. E3.12
The rotor is 2.5 ft in diameter and 10 ft long and rotates at 220 r/min. It is driven by a small
lawnmower engine. If the wind is a steady 10 kn and boat relative motion is neglected, what is
the maximum thrust expected for the rotor? Assume standard air and water density.

|

E3.12 S — — ccmpeg——

(Courtesy of R. C. Lessmann, University of Rhode Island.)

Solution

Convert the rotation rate to w = 27(220)/60 = 23.04 rad/s. The wind velocity is 10 kn = 16.88
ft/s. so the velocity ratio is  dw _ (1.25 ft)(23.04 rad/s) -

U 16.88 ft/s )
Entering Fig.3.27 | we read C; = 3.3 and Cp = 1.2. From Table . standard air density is
0.002377 slug/ft>. Then the estimated rotor lift and drag are

L = CiipU22ba = 3.3(2)(0.002377)(16.88)%(2)(10)(1.25)

= 27.9 Ibf
1.2

D = CpipUi2ba = L % - 27.9( =

j= 10.2 Ibf
L

The maximum thrust available is the resultant of these two
F =[(27.9)% + (10.2)*1"? = 29 Ibf Ans.

If aligned along the boat’s keel. this thrust will drive the boat at a speed of about 5 kn through

the water.
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3.8 The Kelvin Oval:

A family of body shapes taller than they are wide can be formed by letting a uniform
stream flow normal to a vortex pair. It U is to the right, the negative vortex — K is
placed at y = +a and the counterclockwise vortex + K placed at vy = —a., as in Fig.
3.28 . The combined stream function isl > 4 v 4 ay?
X Vv a
iy = Uy > K In 2+ o — G)Q
The body shape is the line ¥ = 0, and some of these shapes are shown in Fig.3.28 .
For K/ U_.a) = 10 the shape is within 1 percent of a Rankine oval (Fig.3.22) turned
90°, but for small K/(U_a) the waist becomes pinched in, and a figure-eight shape oc-
curs at 0.5. For K/(U_a) << 0.5 the stream blasts right between the vortices and iso-
lates two more or less circular body shapes, one surrounding each vortex.
A closed body of practically any shape can be constructed by proper superposition
of sources, sinks, and vortices. See the advanced work in Refs. 2 to 4 for further de-
tails.

(3.130)

y

A
bi 1.5
1.0
0.75
0.55
0.5

Fig. 3.28 Kelvin-oval body shapes
as a function of the vortex-strength
parameter K/(U_.a): outer stream-
lines not shown.

3.9 Potential Flow Analogs:

For complicated potential-flow geometries, one can resort to other methods than su-
perposition of sources, sinks, and vortices. There are a variety of devices which simu-
late solutions to Laplace’s equation.

From 1897 to 1900 Hele-Shaw [9] developed a technique whereby laminar flow be-
tween very closely spaced parallel plates simulated potential flow when viewed from
above the plates. Obstructions simulate body shapes. and dve streaks represent the
streamlines. The Hele-Shaw apparatus makes an excellent laboratory demonstration of
potential flow [10, pp. 8—10]. Figure 3.29 a illustrates Hele-Shaw (potential) flow
through an array of cylinders, a flow pattern that would be difficult to analyze just us-
ing Laplace’s equation. However beautiful this array pattern may be, it is not a good
approximation to real (laminar viscous) array flow. Figure 3.29 b shows experimental
streakline patterns for a similar staggered-array flow at Re = 6400. We see that the in-
teracting wakes of the real flow (Fig.3.29 b) cause intensive mixing and transverse mo-
tion, not the smooth streaming passage of the potential-flow model (Fig. 3.29 a). The
moral is that this is an internal flow with multiple bodies and, therefore, not a good
candidate for a realistic potential-flow model.

Other flow-mapping techniques are discussed in Ref. 8. Electromagnetic fields also
satisfy Laplace’s equation, with voltage analogous to velocity potential and current
lines analogous to streamlines. At one time commercial analog field plotters were avail-
able, using thin conducting paper cut to the shape of the flow geometry. Potential lines
(voltage contours) were plotted by probing the paper with a potentiometer pointer.
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Fig.3.29 Flow past a staggered ar-
ray of cylinders: (a) potential-flow

model using the Hele-Shaw appara-
tus (Tecquipment Ltd., Nottingham,
England). (b) experimental streak-
lines for actual staggered-array
flow at Rep = 6400. (From Ref. 36,
courtesy of Jack Hovt, with the per-
mission of the American Society of
Mechanical Engineers.)

|'._5|_.|
Hand-sketching “curvilinear square’” techniques were also popular. The availability and
the simplicity of digital-computer potential-flow methods [5 to 7] have made analog
models obsolete.

Example 3.13:
A Kelvin oval from Fig.3.28 has K/(U..a) = 1.0. Compute the velocity at the top shoulder of
the oval in terms of U...

Solution

We must locate the shoulder y = / from Eq. 8.130) for ¢y = 0 and then compute the velocity by
differentiation. At ¢y = 0 and vy = /1 and x = 0, Eq. 3.130) becomes

E_ K | hia + 1
a Uya N hia =1

With K/(U..a) = 1.0 and the initial guess i/a = 1.5 from Fig. 3.28 , we iterate and find the lo-
cation fifa = 1.5434.
By inspection v = 0 at the shoulder because the streamline is horizontal. Therefore the shoul-

der velocity is, from Eq. (3.130), o r K K
“y=n = b= " h—a h+a
Introducing K = U..a and h = 1.5434a, we obtain
Ushoutder = U=(1.0 + 1.84 — 0.39) = 2.45U.. Ans.

Because they are short-waisted compared with a circular cylinder, all the Kelvin ovals have shoul-
der velocity greater than the cylinder result 2.0U.. from Eq. (3.123.
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3.10 Other Plane Potential Flows [The Complex Potential W(z)]:

In principle, any plane potential flow can be solved by the method of conformal
napping. by usi Ot rari . .
mapping. by using the complex variable 2= x+ iy i=(—1"”

It turns out that any arbitrary analytic function of this complex variable z has the re-
markable property that both its real and its imaginary parts are solutions of Laplace’s

cquation. It f2) = flx +iy) = filx, y) + i falx, y)
then P h, P Pf P
8.1:2 + a}__,z =0= E)'x-z + a}.2 (3.131)

We shall assign the proof of this as a problem. Even more remarkable if you have never
seen it before is that lines of constant f; will be everywhere perpendicular to lines of
constant f»: ‘dy’ L I

( dx ___)f, —c (dyldx)g,—c

(3.132)

We also leave this proof as a problem exercise. This is true for totally arbitrary f(z) as
long as this function is analytic; i.e., it must have a unique derivative df/dz at every
point in the region.

The net result of Eqgs. (3.131) and (3.132) is that the functions f; and 5> can be inter-
preted to be the potential lines and streamlines of an inviscid flow. By long custom we

let the real part of f{z) be the velocity potential and the imaginary part be the stream
function f(2) = d(x, v) + i(x, v) (3.133)
We try various functions f(z) and see whether any interesting flow pattern results. Of
course, most of them have already been found, and we simply report on them here.
We shall not go into the details, but there are excellent treatments of this complex-
variable technique on both an introductory [4, chap. 5; 10, chap. 5] and a more ad-
vanced [2, 3,] level. The method is less important now because of the popularity of
digital-computer techniques.
As a simple example, consider the linear function
flo)=U.z=U,x+ iUy
It follows from Eq. (3.133) that ¢ = U,.x and b = Uy, which, we recall from Eq.
( 3.70 ), represents a uniform stream in the x direction. Once you get used to the com-
plex variable, the solution practically falls in your lap.
To find the velocities, you may either separate ¢ and s tfrom f(z) and differentiate
or differentiate f directly df _ 9¢ L dy _ dp I
dz  ax  ox dy o dy
Thus the real part of df/dz equals w(x, v). and the imaginary part equals — v(x, yv). To
get a practical result, the derivative Jdf/dz must exist and be unique, hence the require-
ment that fbe an analytic function. For Eq. (3.134), dfidz = U, = u, since it is real, and

v = 0, as expected.
Sometimes it is convenient to use the polar-coordinate form of the complex variable

U — i (3-134)

z=x+iv=re?=rcos @+ irsin 6
_ 3V
where r= (x> + yH'? 6= tan ' =
X

This form is especially convenient when powers of z occur.
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Summary of Complex Potentials for Elementary Plane Flows:

3.10.1 Uniform Stream at an Angle of Attack:
All the elementary plane flows of Sec. 3.3 have a complex-variable formulation. The
uniform stream U, at an angle of attack « has the complex potential

fiz) = Uygze ™ (3.135)
Compare this form with Eq. (3.72 and 3.73)

3.10.2 Line Source at Point Zo:

Consider a line source of strength m placed off the origin at a point 75 = xy + ivy. Its
complex potential is fi=mln(z - 2) (3.136)
This can be compared with Eq.3.74&3.75 which is valid only for the source at the ori-
gin. For a line sink, the strength m is negative.

3.10.3 Line Vortex at Point Zo:

If a line vortex of strength K is placed at point zq, its complex potential is
flz) = —iK In (z — 2y) (3.137)

to be compared with Eq3.77%&3.7¢ Also compare to Eq. (3.136) to see that we reverse the
meaning of ¢ and & simply by multiplying the complex potential by —i.

3.10.4 Flow around a Corner of Arbitrary Angle :

Corner flow is an example of a pattern that cannot be conveniently produced by su-
perimposing sources, sinks, and vortices. It has a strikingly simple complex represen-
tation fly=A7"=A e = A" cos n® + iAF" sin n@
where A and n are constants.

[t follows from Eq. (3.133) that for this pattern

¢ = Ar" cos nf = Ar" sin nf (3.138)

Streamlines from Eq. (3.138) are plotted in Fig.3.30 for five different values of n.
The flow is seen to represent a stream turning through an angle g = 7/n. Patterns in
Fig.3.30 d and e are not realistic on the downstream side of the corner, where separa-
tion will occur due to the adverse pressure gradient and sudden change of direction. In
general, separation always occurs downstream of salient, or protruding corners, except
in creeping flows at low Reynolds number Re << 1.

Since 360° = 277 is the largest possible corner, the patterns for n << § do not repre-
sent corner flow. They are peculiar-looking, and we ask you to plot one as a problem.

If we expand the plot of Fig.3.30 a to ¢ to double size, we can represent stagnation
flow toward a corner of angle 23 = 27/n. This is done in Fig.3.31 for n = 3, 2, and
1.5. These are very realistic flows; although they slip at the wall, they can be patched
to boundary-layer theories very successfully. We took a brief look at corner flows be-
fore, in Examples 3.4 and 3.5
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(a) (b)

(c) (d) (e)
Fig. 3.30 Streamlines for Corner angle 3 of a) 60°,b)90°,¢) 120°,d) 270°, and e) 360°

(&) (=]

Fig.3.31 Streamlines for stagnation flow from Eq. 3.138 for corner angle 28 of
(a) 1207, (b) 1807, and (c) 240"

3.10.5 Flow Normal to a Flat Plate:

We treat this case separately because the Kelvin ovals of Fig. 3.28 failed to degener-
ate into a flat plate as K became small. The flat plate normal to a uniform stream is an
extreme case worthy of our attention.

Although the result is quite simple, the derivation is very complicated and is given,
e.g., in Ref. 2, sec. 9.3. There are three changes of complex variable, or mappings, be-
ginning with the basic cylinder-flow solution of Fig.3.26 a. First the uniform stream is
rotated to be vertical upward, then the cylinder is squeezed down into a plate shape,
and finally the free stream is rotated back to the horizontal. The final result for com-

plex potential is flD=¢ +ih= U, + a*)'"? (3.139

where 2a 1s the height of the plate. To isolate ¢ or i, square both sides and separate
real and imaginary parts

2

— = U — v+ ad) b = Uzxy

Dr. Mohsen Soliman -51-



We can solve for i to determine the streamlines

Ut YU — v+ at) = Ulx?y? (3.140)

Equation (3.140 is plotted in Fig.3.32 a, revealing a doubly symmetric pattern of stream-
lines which approach very closely to the plate and then deflect up and over, with very

high velocities and low pressures near the plate tips.
The velocity v, along the plate surface is found by computing df/dz from Eq. (3.139)

and isolating the imaginary part via
£ g ry _ — = - (3.147)

27 24 1/2
Ux plate surface (1 -V la )

Some values of surtface velocity can be tabulated as follows:
via I 0.0 | 0.2 | 04 0.6 | 0.71 | 0.8 I 0.9 | 1.0

wtU, | 00 | 0204 | 0436 0750 | 100 | 133 | 200 | =

{ |

)
|

1}
[

Broad. low pressure
region of
separated flow

-

-~ ks
- LA
(i. —

(&)

Free streamline
discontinuity
at V=EL7_,

Constant-
pressure
region

i

()

Fig.3.32 Streamlines in upper half-plane for flow normal to a flat plate of height 2a:
a) continuous potential-flow theory; b) actual measured flow pattern;
¢) discontinuous potential theory with k = 1.5
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The origin is a stagnation point; then the velocity grows linearly at first and very rapidly
near the tip, with both velocity and acceleration being infinite at the tip.

As you might guess, Fig. 3.32 @ is not realistic. In a real flow the sharp salient edge
causes separation, and a broad, low-pressure wake forms in the lee, as in Fig. 3.32 b.
Instead of being zero, the drag coefficient is very large, Cp = 2.0 from Table 7.2.

A discontinuous-potential-flow theory which accounts for flow separation was de-
vised by Helmholtz in 1868 and Kirchhoff in 1869. This free-streamline solution is
shown in Fig. 3.32 ¢, with the streamline which breaks away from the tip having a con-
stant velocity V = kU_.. From Bernoulli’s equation the pressure in the dead-water re-
gion behind the plate will equal p, = p.. + 1pU=(1 — k*) to match the pressure along
the free streamline. For k = 1.5 this Helmholtz-Kirchoff theory predicts p, = p.. —
0.625pU=Z and an average pressure on the front Pr= pP= + 0.375pUZ. giving an over-
all drag coefficient of 2.0, in agreement with experiment. However, the coefficient k is
a priori unknown and must be tuned to experimental data, so free-streamline theory
can be considered only a qualified success. For further details see Ref. 2, sec. 11.2.

3.10.6 Complex Potential of The Dipole Flow:

We now analyze the case of the so-called
hydrodynamic dipole, which results from the
superposition of a source and a sink of equal
intensity placed symmetrically with respect to the
origin. The analogy with electromagnetism is
evident. The magnetic field induced by a wire in which
a current flows satisfies equations that are similar to
those governing irrotational plane flows. The complex
potential of a dipole is (if the source and the sink are

,.-"'"
r . : . Z + " :"'b e
W = - Infz+8) — — In(z—n) = — In( ) /('r"' Aot unn.*:za?nﬁ\
o 2m 2w z—n W e I'.l'-'-“‘?!r “j
positioned in (-a,0) and (a,0) respectively). \.;.5, ,} /

Streamlines are circles, the center of which lie on the y-
axis and they converge obviously at the source and at
the sink. Equipotential lines are circles, the center of
which lie on the x-axis.

3.10.7 Complex Potential of a Doublet:

A particular case of dipole is the so-called doublet, in
which the quantity a tends to zero so that the source
and sink both move towards the origin. The complex
potential of a doublet is obtained making the limit of
the dipole potential for vanishing a with the constraint
that the intensity of the source and the sink must
correspondingly tend to infinity as a approaches zero,
the quantity j1 = 2

Being constant (if we just superimpose a source and sink at the origin the resulting potential
would be W=0) W — N

2arz
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Hint: develop In (z+a) and In(z-a) in a Taylor series in the neighborhood of the origin,
assuming small a.

3.10.8 Complex Potential of Flow around A Cylinder:

The superposition of a doublet and a uniform flow
gives the complex potential

W= Uz + -—

Dz

That is represented here in terms of streamlines and
equipotential lines. Note that one of the streamlines
1s closed and surrounds the origin at a constant  —
distance equal to R—\f[ i ) S o
. 2] . —
Recalling the fact that, by definition, a streamline ——
cannot be crossed by the fluid, this complex potential
represents the irrotational flow around a cylinder of radius R approached by a uniform flow
with velocity U. Moving away from the body, the effect of the doublet decreases so that far
from the cylinder we find, as expected, the undisturbed uniform flow. In the two
intersections of the x-axis with the cylinder, the velocity is found to be zero. These two
points are thus called stagnation points.

3.10.9 FLOW AROUND A CYLINDER WITH NONZERO CIRCULATION:

In the last example, we superimpose to the P ————
complex potential that gives the flow y -
around a cylinder a vortex of intensity ¥ )
positioned at the center of the cylinder. The ~—

resulting il iy r

_Tr ¥y r=0 _ <1
potential W =Uz+ Yz P (2) AxUa
i () ]
The presence of the vortex does not alter L ———
the streamline describing the cylinder, .' — .'__ p —— '_ ""_-_--,5:"_"'5@3"3.[-,:"
while the two stagnation points below the x- ™ e AN e
axis. The streamlines are closer to each \ \ A
other on the upper part of the cylinder and A\ '/ '/
more distant on the lower part. This —
indicates that the flow is accelerated on the r L .

drlia ~ dxlia

upper face of the cylinder and decelerated
on the lower part, with respect to the zero circulation case. The resulting flow field
corresponds to the case of a rotating cylinder, which accelerates (with respect to the case of
no circulation) fluid particles on part of the cylinder and decelerates them on the remainder
of the cylinder. Note the presence of a discontinuity in the potential function (thick yellow
line on the left) that is related to the fact that the vortex potential (as mentioned in a
previous section) has a nonzero cyclic constant.

Dr. Mohsen Soliman -54-



3.11 The Method of Images:

The previous solutions have all been for unbounded flows, such as a circular cylinder
immersed in a broad expanse of uniformly streaming fluid, Fig. 3.26 a. However, many
practical problems involve a nearby rigid boundary constraining the flow, e.g., (1)
groundwater flow near the bottom of a dam, (2) an airfoil near the ground, simulating
landing or takeoff, or (3) a cylinder mounted in a wind tunnel with narrow walls. In
such cases the basic unbounded-potential-flow solutions can be modified for wall ef-
fects by the method of images.

Consider a line source placed a distance a from a wall, as in Fig.3.33 a. To create
the desired wall, an image source of identical strength is placed the same distance be-
low the wall. By symmetry the two sources create a plane-surface streamline between
them, which is taken to be the wall.

In Fig. 3.33 b a vortex near a wall requires an image vortex the same distance be-
low but of opposite rotation. We have shaded in the wall, but of course the pattern could
also be interpreted as the flow near a vortex pair in an unbounded fluid.

In Fig.3.33 ¢ an airfoil in a uniform stream near the ground is created by an image
airfoil below the ground of opposite circulation and lift. This looks easy, but actually
it is not because the airfoils are so close together that they interact and distort each
other’s shapes. A rule of thumb is that nonnegligible shape distortion occurs if the body
shape is within two chord lengths of the wall. To eliminate distortion, a whole series
of “corrective” images must be added to the flow to recapture the shape of the origi-
nal isolated airfoil. Reference 2, sec. 7.75, has a good discussion of this procedure,

which usually requires digital-computer summation of the multiple images needed.

Figure 3.33 d shows a source constrained between two walls. One wall required only
one image in Fig. 3.33 a, but fwo walls require an infinite array of image sources above
and below the desired pattern, as shown. Usually computer summation is necessary,
but sometimes a closed-form summation can be achieved, as in the infinite vortex row
of Eq. (3.100.

N e TN '\
PN RO AR
a) ¥ ‘ (ff) | I_: )
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Fig. 3.33 QOnStra111111g walls can be Ty I3
created by image flows: (o) source
near a wall with identical image - e
source: (/) vortex near a wall ~with " =
image vortex of opposite sense: (o) Ny
alrtoil in ground effect with image -1—; a—:‘l-

airfoil of opposite circulation: (o)
source between two walls requiring
an infinite row of images. (d)

Example 3.14:

For the source near a wall as in Fig.3.33 a. the wall velocity is zero between the sources, rises
to a maximum moving out along the wall, and then drops to zero far from the sources. If the
source strength is 8 m?/s, how far from the wall should the source be to ensure that the maxi-
mum velocity along the wall will be 5 m/s?

Solution

At any point x along the wall, as in Fig.E3.14 each source induces a radial outward velocity
v, = m/r, which has a component v, cos 6 along the wall. The total wall velocity is thus

Source m = 8 m2fs

~
S
-~ .
,
a N v, = m
- ~ r
e
\_'\
X ~ (2]
- Wall
e 2
-
-~
a P .
-7 r
P
-
-
Source m Uwann = 2v,- cos 0

From the geometry of Fig.E3.14 r = (x* + ¢*)'? and cos @ = x/r. Then the total wall velocity
can be expressed as "= 2mx
¥+ a?
This is zero at x = 0 and at x — 2. To find the maximum velocity, differentiate and set equal
to zero
{u m
=0

— = at x =a and Umax = —
dx a

We have omitted a bit of algebra in giving these results. For the given source strength and max-
imum velocity, the proper distance a is

8 m?/ _
m =55 _ 1.625 m Ans.
Hmax 5 m/s

a =

For x = a. there is an adverse pressure gradient along the wall, and boundary-layer theory should
be used to predict separation.
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3.12 Axisymmetric Potential Flows:

The same superposition technique which worked so well for plane flow in Sec.3.3%s
also successful for axisymmetric potential flow. We give some brief examples here.
Most of the basic results carry over from plane to axisymmetric flow with only slight

changes owing to the geometric differences. Consider the following related flows:
Counterpart axisvimmmetric flow

Basic plane flow

Uniform stream

Point source or sink

Point doublet

MNo counterpart

Rankine half-body of revolution
Rankine owval of revolution
Sphere

Tear-shaped body

Uniform stream
Line source or sink
Line doublet
Line vortex
Rankine half-body cylinder
Rankine-owval cylinder
Circular cylinder
Syvmmetric airfoil
Since there is no such thing as a point vortex, we must forgo the pleasure of studying
circulation effects in axisymmetric flow. However, as any smoker knows, there is an

axisymmetric ring vortex, and there are also ring sources and ring sinks, which we
leave to advanced texts [for example, 3].

3.12.1 Spherical Polar Coordinates:
Axisymmetric potential flows are conveniently treated in the spherical polar coordi-
nates of Fig.3.34 . There are only two coordinates (r, 8), and flow properties are con-

stant on a circle of radius » sin 6 about the x-axis.
The equation of continuity for incompressible flow in these coordinates is

% (rzv,. sin 6) + 5% (rvg sin 8) = 0 (3.142
where v, and vy are radial and tangential velocity as shown. Thus a spherical polar
stream function® exists such that

1 dir 1 dr
V= s —— Vp= ——— — 3.143

! ~ sin 6 06 " rsin@ or ( )

In like manner a velocity potential ¢(r, ) exists such that
ey 10
v, = 9 vy = - 90 (3.144)

These formulas serve to deduce the ¢ and ¢ functions for various elementary-

axisymmetric potential flows.

.

Properties vary with & on a
circle about 7 axis

Axis of
symmetry

Properties do not vary on a

Fig. 3.34 Spherical polar coordi-
circle about x axis

nates for axisymmetric flow.
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3.12.2 Uniform Stream in the x-direction:

A stream U, in the x direction has components

v, = U, cos @ vg = — U, sin 6
Substitution into Eqgs. (3.143) and (3.144) and integrating give
Uniform stream: = —%erz sin® 6 ¢ = U_r cos 6 (3.145)
As usual. arbitrary constants of integration have been neglected.

3.12.3 Point Source or Sink:

Consider a volume flux ©Q issuing from a point source. The flow will spread out radi-
ally and at radius r will equal Q divided by the area 47+ of a sphere. Thus
o 1

U w2 w0 6.146)

with m = Q/(4+r) for convenience. Integrating (3.143) and (3.144) gives

. i
Point source s = m cos 6 b= —— (3.147)
r

For a point sink, change m to — m in Eq. (3.147).
3.12.4 Point Doublet:
Exactly as in Fig.3.15, place a source at (x, v) = ( — a, 0) and an equal sink at ( + a,
0), taking the limit as a becomes small with the product 2am = A held constant
. A sin® 6
lr!"-clc-l.ll.wlct = lim (m cos Bsource — mcos 9sink) = (3'148)
20;_;0)1 r

We leave the proof of this limit as a problem. The point-doublet velocity potential

. ' m m A cos 6
¢'c|oublet = (l'll)% (_ R + ) = ;"2 (3-149)

Jam = A source Fsink

The streamlines and potential lines are shown in Fig.3.35 . Unlike the plane doublet
flow of Fig.3.15, neither set of lines represents perfect circles.

Potential
lines

Fig.3.35 Streamlines and potential
lines due to a point doublet at the
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3.12.5 Uniform Stream Plus a Point Source:

By combining Eqgs. (3.145) and (3.147) we obtain the stream function for a uniform stream
plus a point source at the origin

Y = —%Uirz sin® 6 4+ m cos 6 (3.150)

From Eq. (3.143) the velocity components are, by differentiation,

" .
u.= U, cos 8 + — vy = — U sin 6 (3.151)
-

Setting these equal to zero reveals a stagnation point at ¢ = 180° and r = a =
(.m.fUz)'Q. as shown in Fig.3.36 . If we letm = U..a”, the stream function can be rewrit-
ten as ulr 1L /ry2 . 5

—— — cos @ — — (—) sin® 6 (3.152)

U.a? 2 \a
The stream surface which passes through the stagnation point (v, 8) = (a. 7) has the
value r = — U_a” and forms a half-body of revolution enclosing the point source, as
shown in Fig.3.36 . This half-body can be used to simulate a pitot tube. Far down-
stream the half-body approaches the constant radius R = 2a about the x-axis. The max-

imum velocity and minimum pressure along the halt-body surface occur at 6 = 70.5°,

= a\V'3, V. = 1.1550U_.. Downstream of this point there is an adverse gradient as V|
slowly decelerates to /., but boundary-layer theory indicates no flow separation. Thus
Eq. (3.152) is a very realistic simulation of a real half-body flow. But when the uniform
stream is added to a sink to form a half-body rear surface, e.g.. similar to Fig.3.18 |
separation is predicted and the inviscid pattern is not realistic.

¥

N ~
2a
Stagnation
point

Y

-~

2a

Fig.3. 36 Streamlines for a Rankine Il ¥

half-body of revolution.

3.12.6 Uniform Stream Plus a point Doublet (Flow Around a Sphere):

From Eqs. (3.145 and (3.148), combination of a uniform stream and a point doublet at

the origin gives 1 . A
= g iy = - U sin® 6 + — sin® @ (3.153)
) ¥
Examination of this relation reveals that the stream surface ¢ = 0 corresponds to the
. . - e iy F A N3
sphere of radius = — ( = ) (3.154)

This is exactly analogous to the cylinder flow of Fig.3.26 a formed by combining a
uniform stream and a line doublet.
Letting A =

3 - . .
+U_.a” for convenience, we rewrite Eq. (3.153) as

i . e

. 2 f
T, 3 = —sin 9{— — —) (3.155)
L a” Ca” o

The streamlines for this sphere flow are plotted in Fig.3.37 . By differentiation from
Eq. (3.143) the wvelocity components are

] 3

3 - 3

v, = U cos 9{1 — a* ) Vg = 7% U sin 9(2 4 “ ) (3.15%)
We see that the radial velocity vanishes at the sphere surface r = a, as expected. There
is a stagnation point at the front (a. 7) and the rear (a, 0) of the sphere. The maximum
velocity occurs at the shoulder (a. *37). where v, = 0 and vy = —1.5U... The
surtace-velocity distribution is

Vi = —vVgl,—a = 53U sin 6 (3.157)

Note the similarity to the cylinder surface velocity equal to 2U . sin # from Eq. (3.123
with zero circulation.
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Equation (3.157) predicts, as expected, an adverse pressure gradient on the rear (8 <<
907) of the sphere. If we use this distribution with laminar-boundary-layer theory [for
example, 15, p. 298], separation is computed to occur at about ¢ = 76°, so that in the
actual flow pattern ot Fig.3.38 a broad wake forms in the rear. This wake interacts
with the free stream and causes Eq. (3.157) to be inaccurate even in the front of the
sphere. The measured maximum surface velocity is equal only to about 1.30U_ and oc-
curs at about # = 107° (see Ref. 15, sec. 4.10.4, for further details).
=150

v

niax

___—— Potential lines

| |
Fig.3 37 Streamlines and potentia
lines for inviscid flow past a
sphere.

Laminar
separation
at 767

Fig. 3.38 Strong differences in lam-
inar and turbulent separation on an
8.5-in bowling ball entering water
at 25 ft/s: (@) smooth ball, laminar
boundary layer; (&) same entry, tur-
bulent flow induced by patch of
nose-sand roughness. (U.S. Navy
photograph, Ordnance Test Station,
Pasadena Annex.)

(a) ()

3.13 The Concept of Hydrodynamic Mass:

When a body moves through a fluid, it must push a finite mass of fluid out of the way.
If the body is accelerated, the surrounding fluid must also be accelerated. The body
behaves as if it were heavier by an amount called the hyvdrodynamic mass (also called
the added or virtual mass) of the fluid. If the instantaneous body velocity is U(7), the

summation of forces must include this effect U
!
S F=(m +m;,)7 (3.158)
£

where my,. the hydrodynamic mass, is a function of body shape, the direction of mo-
tion, and (to a lesser extent) flow parameters such as the Reynolds number.
According to potential theory [2, sec. 6.4; 3, sec. 9.22], m,, depends only on the
shape and direction of motion and can be computed by summing the total Kinetic en-
ergy of the fluid relative to the body and setting this equal to an equivalent body en-

erey KEpuia = | tdm Vi, = tm, U2 (3.159)
The integration of fluid Kinetic energy can also be accomplished by a body-surface in-
tegral involving the velocity potential [16, sec. 11].
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Consider the previous example of a sphere immersed in a uniform stream. By sub-
tracting out the stream velocity we can replot the flow as in Fig.3.39 . showing the
streamlines relative to the moving sphere. WNote the similarity to the doublet flow in
Fig.3.35 . The relative-velocity components are found by subtracting {7 from Eqs. (3.156

3 <] -
Ua” cos & Ua™ sin &
v, = ——— vy = —
! I i 243

The element of fluid mass, in spherical polar coordinates, is

dm = (2 sin 8)r dr d6

When o and V,?el = vf -+ vg are substituted into Eq. (3.159 ). the integral can be eval-
3rs2
uated KEqnuia = tpma U
particle:
dm

__d(KE) = %d:n v2

v
u ————
Fig. 3.39 Potential-flow streamlines
relative to a moving sphere. Com-
pare with Figs.3.35 and 3.37.
2 3
or my(sphere) = spma (3.160)

Thus, according to potential theory, the hydrodynamic mass of a sphere equals one-
half of its displaced mass, independent of the direction of motion.

A similar result for a cylinder moving normal to its axis can be computed from Eqgs.
(3.122 after subtracting out the stream velocity. The result is

my(cylinder) = pma’L (3.161)

for a cylinder of length L, assuming two-dimensional motion. The cylinder’s hydro-
dynamic mass equals its displaced mass.

Tables of hydrodynamic mass for various body shapes and directions of motion are
given by Patton [17]. See also Ref. 21.

3.14  Other Aspects of Potential Flow Analysis

In the preceding section the method of superposition of basic potentials has been used to
obtain detailed descriptions of irrotational flow around certain body shapes immersed in a
uniform stream. For the cases considered, two or more of the basic potentials were combined
and the question is asked: What kind of flow does this combination represent? This approach
is relatively simple and does not require the use of advanced mathematical techniques. It is,
however, restrictive in its general applicability. It does not allow us to specify a priori the
body shape and then determine the velocity potential or stream function that describes the
flow around the particular body. Determining the velocity potential or stream function for a
given body shape is a much more complicated problem.

It is possible to extend the idea of superposition by considering a distribution of sources
and sinks, or doublets, which when combined with a uniform flow can describe the flow
around bodies of arbitrary shape. Techniques are available to determine the required distri-
bution to give a prescribed body shape. Also, for plane potential flow problems it can be
shown that complex variable theory (the use of real and imaginary numbers) can be effec-
tively used to obtain solutions to a great variety of important flow problems. There are, of
course, numerical techniques that can be used to solve not only plane two-dimensional prob-
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lems, but the more general three-dimensional problems. Since potential flow is governed by
Laplace’s equation, any procedure that is available for solving this equation can be applied
to the analysis of irrotational flow of frictionless fluids. Potential flow theory is an old and
well-established discipline within the general field of fluid mechanics. The interested reader
can find many detailed references on this subject, including Refs. 2, 3, 4, 5, and 6 given at
the end of this chapter.

An important point to remember is that regardless of the particular technique used to
obtain a solution to a potential flow problem, the solution remains approximate because of
the fundamental assumption of a frictionless fluid. Thus, “exact” solutions based on poten-
tial flow theory represent, at best, only approximate solutions to real fluid problems. The
applicability of potential flow theory to real fluid problems has been alluded to in a number
of examples considered in the previous section. As a rule of thumb, potential flow theory
will usuvally provide a reasonable approximation in those circumstances when we are deal-
ing with a low viscosity fluid moving at a relatively high velocity, in regions of the flow field
in which the flow is accelerating. Under these circumstances we generally find that the ef-
fect of viscosity is confined to the thin boundary layer that develops at a solid boundary. Out-
side the boundary layer the velocity distribution and the pressure distribution are closely
approximated by the potential flow solution. However, in those regions of the flow field in
which the flow is decelerating (for example, in the rearward portion of a bluff body or in the
expanding region of a conduit) the pressure near a solid boundary will increase in the direc-
tion of flow. This so-called adverse pressure gradient can lead to flow separation, a phe-
nomenon that causes dramatic changes in the flow field which are generally not accounted
for by potential theory. However, as discussed in Chapter 9, in which boundary layer theory
is developed, it is found that potential flow theory is used to obtain the appropriate pressure
distribution that can then be combined with the viscous flow equations to obtain solutions
near the boundary (and also to predict separation). The general differential equations that de-
scribe viscous fluid behavior and some simple solutions to these equations are considered in
the remaining sections of this chapter.

3.15 Additional Advanced Potential Flows

Up to this point, we do not have any particular convenience in representing the flow in the complex
plane. The full potential of this choice will become clear as soon as we introduce conformal
mapping techniques. Let the following function P { z]

Be an analytic function. It follows that also the inverse function z (z) is analytic. Consider the two
planes z and d=a 4 ﬁ;:

The above function creates a link between a point in the z plane and a point in the 7' plane. We can
state that it maps one plane to the other. This transformation is said to be conformal because it does
not affect angles, in the sense that given two lines in the z plane that intersect with some angle, the
two transformed lines in the z' plane intersect with the same angle. In particular, two orthogonal
families of curves in the z plane map into two other orthogonal families of curves in the z' plane. It
follows that a conformal transformation maps equipotential and stream lines of an irrotational flow
in the z plane into the corresponding lines of another irrotational flow in the z' plane.

Given a flow field in the z plane with complex potential W (z), the function:
W) =W (=(2))]

Is analytic because both W (z) and z (z') are analytic. In other words, the derivative
AW av d=

Az dzx A=
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Exists and is unique because the derivatives on the right hand side exist and are unique. Therefore,
W' is the complex potential of an irrotational inviscid flow in the z' plane. If P and P' are two
corresponding points in the z and z' planes, respectively, Zp = z[ zJP: ]

I

Wilzp) =W (2(2p)) = Wizp)
And So that the two complex potentials W and W' assume the same value in corresponding points of
the two domains.Circulation along any (corresponding) closed line has also the same value in the
two spaces because it is given by the integrals

p & y & $ anw b, aw”

That are equal because along the two lines C and C', the potentials assume the same value.Among
the conformal transformations, the Joukowski transformation is relevant for the study of flow
around a wing, because it maps the domain around a cylinder into the domain around a wing, whose
thickness and curvature can be varied.

The Joukowski Transformation:

We introduce the conformal transformation due to Joukowski (who is pictured

=
above) 7 — =+ A
=

And analyze how a cylinder of radius R defined in the z plane maps into the 7' plane:

1. If the circle is centered at (0, 0) and A = R the circle maps into the segment between
-2\ and +2A lying on the x-axis;

2. If the circle is centered at (X.,0) and A = R - X, the circle maps in an airfoil that is
symmetric with respect to the x'-axis;

3. If the circle is centered at (0, y.) and A =V (R® - yzc), the circle maps into a curved
segment;

4. If the circle is centered at (X¢, y¢) and A = - X, + (R2 — yzc), , the circle maps into an
asymmetric airfoil.

To summarize, moving the center of the circle along the x-axis gives thickness to the airfoil,
moving the center of the circle along the y-axis gives camber to the airfoil. In the following
interactive application it is possible to move the center of the circle in the z plane and see
the resulting transformed airfoil. The site is (http: www.diam.unige.it/ ) We need to
introduce some notations on airfoils.

chord liqe thickness, t chamber line

camber, cmb angle of attack
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The generic Joukowski airfoil has a rounded leading edge and a cusp at the trailing edge
where the camber line forms an angle 2 § with the chord line. In the cylinder plane, B is
related to the vertical coordinate of the center of the cylinder so that
A = arcsin(y.)

Usually the angle of attack (sometimes called physical) is defined as the angle r¥that the
uniform flow forms with the chord line. More interesting for aerodynamics is :}I}e angle

= —
In fact, when the angle ¥ is zero, the lift, as will be shown, vanishes. Then the angle r’rj}G 18
often defined as the effective angle of attack.

3.16 Other Aspects of Differential Analysis

In this chapter the basic differential equations that govern the flow of fluids have been
developed. The Navier—Stokes equations, which can be compactly expressed in vector

notation as aV |
pl otV VV )= —Vp+pg+ puV?V (3.162)
e
along with the continuity equation V-V=0 (3.163 )

are the general equations of motion for incompressible Newtonian fluids. Although we have
restricted our attention to incompressible fluids, these equations can be readily extended to
include compressible fluids. It is well beyond the scope of this introductory text to consider
in depth the variety of analytical and numerical techniques that can be used to obtain both
exact and approximate solutions to the Navier—Stokes equations. Students, however, should
be aware of the existence of these very general equations, which are frequently used as the
basis for many advanced analyses of fluid motion. A few relatively simple solutions have
been obtained and discussed in this chapter to indicate the type of detailed flow information
that can be obtained by using differential analysis. However, it is hoped that the relative ease
with which these solutions were obtained does not give the false impression that solutions
to the Navier—Stokes equations are readily available. This is certainly not true, and as pre-
viously mentioned there are actually very few practical fluid flow problems that can be solved
by using an exact analytical approach. In fact, there are no known analytical solutions to
Eq. 3.162 for flow past any object such as a sphere, cube, or airplane.

Because of the difficulty in solving the Navier—Stokes equations, much attention has
been given to various types of approximate solutions. For example, if the viscosity is set
equal to zero, the Navier—Stokes equations reduce to Euler’s equations. Thus, the friction-
less fluid solutions discussed previously are actually approximate solutions to the Navier—
Stokes equations. At the other extreme, for problems involving slowly moving fluids, viscous
effects may be dominant and the nonlinear (convective) acceleration terms can be neglected.
This assumption greatly simplifies the analysis, since the equations now become linear. There
are numerous analytical solutions to these “slow flow” or “creeping flow” problems. Another
broad class of approximate solutions is concerned with flow in the very thin boundary layer.
L. Prandtl showed in 1904 how the Navier—Stokes equations could be simplified to study
flow in boundary layers. Such “boundary layer solutions™ play a very important role in the
study of fluid mechanics. A further discussion of boundary layers is given in Chapter 9.
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3.16.1 Numerical Methods:

Numerical methods using digital computers are, of course, commonly utilized to solve a wide
variety of flow problems. As discussed previously, although the differential equations that
govern the flow of Newtonian fluids [the Navier—Stokes equations (3.162 )] were derived
many years ago, there are few known analytical solutions to them. With the advent of high-
speed digital computers it has become possible to obtain approximate numerical solutions to
these (and other fluid mechanics) equations for a wide variety of circumstances.

Of the various techniques available for the numerical solution of the governing differ-
ential equations of fluid flow, the following three types are most common: (1) the finite dif-
ference method, (2) the finite element (or finite volume) method, and (3) the boundary ele-
ment method. In each of these methods the continuous flow field (i.e., velocity or pressure
as a function of space and time) is described in terms of discrete (rather than continuous) val-
ues at prescribed locations. By this technique the differential equations are replaced by a set
of algebraic equations that can be solved on the computer.

For the finite element (or finite volume) method, the flow field is broken into a set of
small fluid elements (usually triangular areas if the flow is two-dimensional, or small volume
elements if the flow is three-dimensional). The conservation equations (i.e., conservation of
mass, momentum, and energy) are written in an appropriate form for each element, and the
set of resulting algebraic equations is solved numerically for the flow field. The number, size,
and shape of the elements are dictated in part by the particular flow geometry and flow con-
ditions for the problem at hand. As the number of elements increases (as is necessary for
flows with complex boundaries), the number of simultaneous algebraic equations that must
be solved increases rapidly. Problems involving 1000 to 10,000 elements and 50,000 equa-
tions are not uncommon. A mesh for calculating flow past an airfoil is shown in Fig.3.40 .
Further information about this method can be found in Refs. 10 and 13.

“\m’g‘;ﬁv AR iﬂé ;“
A wvﬁqaﬁf%
}é ‘hrééa"#
AR

< *’ L/

B FIGURE 340 Anisotropic adaptive mesh for the calculation of vis-
cous flow over a NACA 0012 airfoil at a Reynolds number of 10,000, Mach
number of (.755, and angle of attack of 1.5°. (From CFD Laboratory, Concordia
University. Montreal, Canada. Used by permission.)

boundary elements. The strength and type of the singularities are chosen so that the appro-
priate boundary conditions of the flow are obtained on the boundary elements. For points in
the flow field not on the boundary, the flow is calculated by adding the contributions from
the various singularities on the boundary. Although the details of this method are rather math-
ematically sophisticated, it may (depending on the particular problem) require less computa-
tional time and space than the finite element method.
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Typical boundary elements and their associated singularities (vortices) for two-
dimensional flow past an airfoil are shown in Fig.3.41 . Such use of the boundary element
method in aerodynamics is often termed the panel method in recognition of the fact that each
element plays the role of a panel on the airfoil surface (Ref. 15).

The finite difference method for computational fluid dynamics is perhaps the most
easily understood and widely used of the three methods listed above. For this method the
flow field is dissected into a set of grid points and the continuous functions (velocity, pres-
sure, etc.) are approximated by discrete values of these functions calculated at the grid points.
Derivatives of the functions are approximated by using the differences between the function
values at neighboring grid points divided by the grid spacing. The differential equations are
thereby transferred into a set of algebraic equations, which is solved by appropriate numer-
ical techniques. The larger the number of grid points used, the larger the number of equations
that must be solved. It is usually necessary to increase the number of grid points (i.c., use a
finer mesh) where large gradients are to be expected, such as in the boundary layer near a
solid surface.

A very simple two-dimensional example of the finite difference technique is presented
in the following example.

In general the governing equations to be solved are partial differential equations [rather
than ordinary differential equations and the finite difference method becomes considerably
more involved. The following example illustrates some of the concepts involved.

Example 3.15: on Numerical Methods:

Consider steady, incompressible flow of an inviscid fluid past a circular cylinder as shown
in Fig. E3.15a. The stream function, ¢, for this flow is governed by the Laplace equation
(see Section3.3)

— =0 (1)

The exact analytical solution is given in Section3.6.
Describe a simple finite difference technique that can be used to solve this problem.
Solution

The first step is to define a flow domain and set up an appropriate grid for the finite differ-
ence scheme. Since we expect the flow field to be symmetrical both above and below and
in front of and behind the cylinder, we consider only one quarter of the entire flow domain
as indicated in Fig. E3.155H. We locate the upper boundary and right-hand boundary far enough

o |
— X
| ay
i o 1
o o o
(a) '3
Vi1
Ay + . (b)
—b|,ﬂ){’|-— | —
Wi, Wi i Wiel,j
. . *
Ax Ax
Ay B FIGURE E3.15
(c)
eV .

i,j-1
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from the cylinder so that we expect the flow to be essentially uniform at these locations. It
is not always clear how far from the object these boundaries must be located. If they are not
far enough, the solution obtained will be incorrect because we have imposed artificial, uniform
flow conditions at a location where the actual flow is not uniform. If these boundaries are
farther than necessary from the object, the flow domain will be larger than necessary and ex-
cessive computer time and storage will be required. Experience in solving such problems is
invaluable!

Once the flow domain has been selected, an appropriate grid is imposed on this do-
main (see Fig. E3.155/). Various grid structures can be used. If the grid is too coarse, the nu-
merical solution may not be capable of capturing the fine scale structure of the actual flow
field. If the grid is too fine, excessive computer time and storage may be required. Consid-
erable work has gone into forming appropriate grids (Ref. 16). We consider a grid that is uni-
formly spaced in the x and y directions., as shown in Fig. E3.155.

As shown in Eq.3.113 | the exact solution to Eq. 1 (in terms of polar coordinates r, ¢
rather than Cartesian coordinates x, y) is & = Ur(1 — a’/r?) sin 6. The finite difference so-
lution approximates these stream function values at a discrete (finite) number of locations (the
grid points) as is; ;. where the i and j indices refer to the corresponding x; and y; locations.

The derivatives of i can be approximated as follows:

difr
,l'f = i(@bi+l,;‘ — i)

ox
and ('J"il..‘t‘f 1
= . — il
fﬂ_}-‘ A}' (i!b:,,r+ 1 U‘ r,J)

This particular approximation is called a forward-difference approximation. Other approxi-
mations are possible. By similar reasoning, it is possible to show that the second derivatives
of iy can be written as follows: %y 1

Py —(Arf (frivr,; — 2 + biq ) 2)
and R ) )
asilr 1
5 = —(3\‘)2 (rijor — 2 5 + Wi ;) (3)

ay-
Thus, by combining Eqs. 1. 2, and 3 we obtain
% s 1 1
>t == (Ax) (v + o1 ) + (Ay)? (Wi j+1

ax” ay
| 1
+ Yii—1) — 2<(L\x)g + (3\‘)2> i =0 (4)

Equation 4 can be solved for the stream function at x; and y; to give
;= 2[(Ax) :_ (Av)] [(AY (rir,j + drimg ) + (AP (i oy + i 1)] (3
Note that the value of i, ; depends on the values of the stream function at neighboring grid
points on either side and above and below the point of interest (see Eq. 5 and Fig. E3.15 c).
To solve the problem (either exactly or by the finite difference technique) it is neces-
sary to specify boundary conditions for points located on the boundary of the flow domain
(see Section 3.6 ). For example, we may specify that v = 0 on the lower boundary of the
domain (see Fig. E3.15b) and ¢4 = C, a constant, on the upper boundary of the domain. Ap-
propriate boundary conditions on the two vertical ends of the flow domain can also be spec-
ified. Thus, for points interior to the boundary Eq. 5 is valid; similar equations or specified
values of ; ; are valid for boundary points. The result is an equal number of equations and
unknowns, i ;, one for every grid point. For this problem, these equations represent a set of
linear algebraic equations for ¢s; ; the solution of which provides the finite difference ap-
proximation for the stream function at discrete grid points in the flow field. Streamlines (lines
of constant ¢s) can be obtained by interpolating values of i; ; between the grid points and
“connecting the dots™ of ¢y = constant. The velocity field can be obtained from the deriva-
tives of the stream function according to Eq.3.66 . That is,

difr 1
and e ay Ay (hrier = i)
s 1
v = = o _ﬁx('affﬁh_;' - i_-!"l;',j)

Further details of the finite difference technique are beyond the scope of this text but canbe
found in standard references on the topic (Refs. 11 and 12).
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3.16.2 The Finite Difference Method:

Although textbooks on numerical analysis [5, 20] apply finite-difference techniques to
many different problems. here we concentrate on potential flow. The idea of FDM is
to approximate the partial derivatives in a physical equation by *“differences’™ between
nodel values spaced a finite distance apart—a sort of numerical calculus. The basic
partial differential equation is thus replaced by a set of algebraic equations for the nodal
values. For potential (inviscid) flow, these algebraic equations are linear. but they are
generally nonlinear for viscous flows. The solution for nodal values is obtained by it-
eration or matrix inversion. Nodal spacings need not be equal.

Here we illustrate the two-dimensional Laplace equation. choosing for convenience
the stream-function form s 2

x> A’
subject to known values of yr along any body surface and known values of dy/dx and
Jy/dy in the free stream.

Our finite-difference technique divides the flow field into equally spaced nodes, as
shown in Fig.8.42 . To economize on the use of parentheses or functional notation, sub-
scripts i and j denote the position of an arbitrary, equally spaced node. and i ; denotes

the value of the stream function at that node
W ;= P(xo + i Ax, yvo + j Ay)

=0 (3.164 )

Thus, ;4 ; is just to the right of s ;.
and ; ;4 1s just above.

An algebraic approximation Ay

for the derivative duy/dx is

oY P(x + Ax, v) — ddx, v) Vit v, . Vil
Pl A O T e © N ©

Fig.3 42 2-D rectangular
finite difference grid.

A similar approximation for the second derivative is

P 1 [+ Ax, y) — f(x, ) _ x y) — (x — Ax, y)
x> Ax [ Ax Ax ]

The subscript notation makes these expressions more compact

oy I

ox - Ax (Wiv1,; — Pip)
5 (3.165)
Iy
a’.\’z sz (

Wiv1; — 2 i + iy ;)

These formulas are exact in the calculus limit as Ax — 0, but in numerical analysis we
keep Ax and Ay finite, hence the term finite differences.

In an exactly similar manner we can derive the equivalent difference expressions for
the v direction

U
a.\"‘ = I (i."irr'.j+| — l.b'r'.j)
D% 1
2 T Ay W T 2 T WD (3.166)

Dr. Mohsen Soliman -68-



The use of subscript notation allows these expressions to be programmed directly into
a scientific computer language such as BASIC or FORTRAMN.

When (3.165 ) and (3.166 ) are substituted into Laplace’s equation (3.164 ). the result
is the algebraic formula

200 + By = i q; + i ; + Bl ;0 T+ i) (3.167)

where 3 = (&.\:;"Ay)z depends upon the mesh size selected. This finite-difference model
of Laplace’s equation states that every nodal stream-function value y; ; is a linear com-
bination of its four nearest neighbors.

The most commonly programmed case is a square mesh (g = 1), for which Eq.

(3-167) reduces to /7 ;= :'{ Wy s + i,-'f,_‘,_] + g+ !f!,_]r.;. ) (2.168)

Thus. for a square mesh. each nodal value equals the arithmetic average of the four
neighbors shown in Fig.3.42 . The formula is easily remembered and casily pro-
grammed. It P(1. J) is a subscripted variable stream function, the BASIC or FORTRAN
statement of (3.168) is

POIO.H=025 = (PI.LIJ+ H +PI.JT—1H+POA+ 1.0+ PI—1.1) (3169)

This is applied in iterative fashion sweeping over each of the internal nodes (1. J), with
known walues of P specified at each of the surrounding boundary nodes. Any initial
guesses can be specified for the internal nodes P(I, J), and the iteration process will
converge to the final algebraic solution in a finite number of sweeps. The numerical
error, compared with the exact solution of Laplace’s equation, is proportional to the
square of the mesh size.

Convergence can be speeded up by the successive overrelaxation (SOR) method,
discussed by Patankar [5]. The modified SOR form of the iteration is

P(l. J) = P(I. J) + 0.25 «= A = (P(I.J + 1) +~ P(I.J — 1)

+ PO+ 1. +POI— 1.1 — 4 = P. Iy (3.170)
The recommended value of the SOR convergence factor A is about 1.7. Note that the
value A = 1.0 reduces Eq. (3.170) to (3.169).

Let us illustrate the finite-difference method with an example.

Example 3.16 (Also on Numerical Methods):

Make a numerical analysis, using Ax = Ay = 0.2 m, of potential flow in the duct expansion
shown in Fig.3.43 . The flow enters at a uniform 10 m/s, where the duct width is 1 m, and is
assumed to leave at a uniform velocity of 5 m/s, where the duct width is 2 m. There is a straight
section 1 m long, a 45° expansion section, and a final straight section 1 m long.

Solution
Using the mesh shown in Fig.3.43 results in 45 boundary nodes and 91 internal nodes, with i
varying from 1 to 16 and j varying from 1 to 11. The internal points are modeled by Eq. (3.169).
For convenience, let the stream function be zero along the lower wall. Then since the volume
flow is (10 m/s)(1 m) = 10 m?/s per unit depth, the stream function must equal 10 m?/s along

the upper wall. Over the entrance and exit planes, the stream function must vary linearly to give
uniform velocities:

Inlet: a1, J) =2 = (J — 6) forJ = 7 to 10
Exit: (16, ) =T — 1 for J = 2 to 10
(1, 11) y=2m (16, 11)
10 ™ ™ - - - ™ ™ . - - ™ ™ ™ ™ - -
m/s ™ L] L L L J L L L L
Fig.3.43 Numerical model oo oo 5
. m/s
of potential flow through a 1.6 y=1m c o o o
2-D 45° expansion. The nodal s e s
points shown are 20 cm apart ; oo
There are 45 boundary nodes I _ e o o o
i i ¥y=0m (16, 1)
91 internal nodes.
‘- Im - I m - Im -]
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All these boundary values must be input to the program and are shown printed in Fig.3.44 .
Initial guesses are stored for the internal points, say, zero or an average value of 5.0 m%/s.
The program then starts at any convenient point, such as the upper left (2, 10), and evaluates Eq.
(3.169) at every internal point, repeating this sweep iteratively until there are no further changes
(within some selected maximum change) in the nodal values. The results are the finite-differ-
ence simulation of this potential flow for this mesh size: they are shown printed in Fig.3.44 to

three-digit accuracy. The reader should test a few nodes in Fig.3.44 to verify that Eq. (3.169)
is satisfied everywhere. The numerical accuracy of these printed values is difficult to estimate,
since there is no known exact solution to this problem. In practice, one would keep decreasing
the mesh size to see whether there were any significant changes in nodal values.

This problem is well within the capability of a small personal computer. The values shown
in Fig.3.44 were obtained after 100 iterations, or 6 min of execution time. on a Macintosh SE
personal computer, using BASIC.

W=1000 1000 1000 1000 1000 10.00 1000 1000 1000  10.00 1000 1000 1000 10.00  10.00  10.00
800 802 B 8.07 8.12 8.20 830 841 8.52 8.62 8.71 8.79 8.85 8.91 8.95  9.00
600 603 606 612 622 6.37 658 682 705 76 74 159 7 782 7491 8.00
400 403 407 413 426 448 4.84 524 5.61 5.93 6.19 641 659 674 688 7.00
200 202 205 2.09 220 244 3.08 369 421 465 5.00 528 550 569  5.85 6.00

¥=000 000 000 000 000 000 1.33 222 292 3.45 387 419 445 466 484 5.00

237 283 318 345 366 384 4.00

1.42 190 224 250 270 1386 3.00

1.09 1.40 1.61 1.7 1.89 2.00
044 066 079 087 (.94 1.00
000 000 000 000 000 000

Fig.3.44 Stream-function nodal val-
ues for the potential flow of Fig.
3.43. Boundary values are known in-

puts. Internal nodes are solutions to Eq.3.169

Although Fig. 3.44 is the computer solution to the problem. these numbers must be manip-
ulated to yield practical engineering results. For example, one can interpolate these numbers to
sketch various streamlines of the flow. This is done in Fig. 3.45 a. We see that the streamlines
are curved both upstream and downstream of the corner regions, especially near the lower wall.
This indicates that the flow is not one-dimensional.

The velocities at any point in the flow can be computed from finite-difference formulas such
as Eqgs. (3.165) and (3.1 66). For example, at the point (I, J) = (3. 6). from Eq. (3.166). the hor-

izontal velocity is approximately 3.7)— 3.6 2.00 — 0.00
(3, 6) == L ) L ) = = 10.45 m/s
Ay 0.2
and the vertical velocity is zero from Eq. (3.165). Directly above this on the upper wall, we es-
timate 3.11) — ¢{3.10 10.00 — R8.07
w3, 11) = L ) L ) _ = 9.65 m/s
Ay 0.2

The flow is not truly one-dimensional in the entrance duct. The lower wall, which contains
the diverging section, accelerates the fluid, while the flat upper wall is actually decelerating the fluid.
Another output function, useful in making boundary-layer analyses of the wall regions, is the
pressure distribution along the walls. If p; and V| are the pressure and velocity at the entrance (I =
1), conditions at any other point are computed from Bernoulli’s equation , neglecting gravity
p+ eV =p + 1pVi
which can be rewritten as a dimensionless pressure coefficient

PP V2
C s =1—
r P" Ipvi ( Vi )
This determines p after V' is computed from the stream-function differences in Fig.3.44

Figure 3.45 H shows the computed wall-pressure distributions as compared with the one-

dimensional continuity approximation VA, = V(x)A(x), or A

C -dim)=1—|— 1
plone-dim) (A ) (1)
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The one-dimensional approximation, which is rather crude for this large (45°) expansion, lies
between the upper and lower wall pressures. One-dimensional theory would be much more ac-
curate for a 10° expansion.

Analyzing Fig.3.45 b, we predict that boundary-layer separation will probably occur on the
lower wall between the corners, where pressure is strongly rising (highly adverse gradient). There-

e = 14O
P =
vi \
._1_
I
| |
| Cexd | =
1 T |
| |
1 1
1 |
I 1 o
1 1
. ' . .
1.0 P I [ '
- o — 2 I [ [
N el o | ! o, 75
o — I I
| 1
oA Upper surface | | One-dimensional |
o,z — | | AP pPros i mation |
| Eq. (123 !
L Na ¥ } |
| 1 1
s T
o= I [ [
— g — 1 | 1
P | |
—0.e — Lower surface | ! CE I
o i : . :

Fig.3.45 Useful results computed from Fig.3.44 : (@) streamlines of the flow;
(b) pressure-coefficient distribution along each wall.

fore potential theory is probably not too realistic for this flow, where viscous effects are strong.
(as shown in fig.3.46 for the real flow in a diffuser where the current example is half the flow field)

Potential theory is reversible; i.e., when we reverse the flow arrows in Fig.3.45 a, then Fig.
3.45b is still valid and would represent a 45° contraction flow. The pressure would fall on both
walls (no separation) from x = 3 m to x = 1 m. Between x = 1 m and x = 0, the pressure rises
on the lower surface, indicating possible separation, probably just downstream of the corner.

This example should give the reader an idea of the usefulness and generality of numerical
analysis of fluid flows.

Thin —
boundary —— A=

layers — - I

- Low
wvelocity,

I .  —— high

e __ =1 pressure
Fig.3.46 T — —

Ditfuser performance: T T — -
(@) ideal pattern e
with good perfor- — ===l
mance; (b) actual -
measured pattern Thick Backflow _—
with boundary- boundary e
layer separation layers _
and resultant f.ﬁ = —
poor performance. - —————
— —— High

—+ — — . velocity,
= loar

- — =

- = pressure

() 571%1%_”__% = - “Stalled”
T\ flow

Separation ——
point

\
\
A
.“Il'l.l
II|
|
\
'(-\I .
R |
II|
AN

Dr. Mohsen Soliman -71-



3.16.3 The Finite Element Method:

The finite-element method [19] is applicable to all types of linear and nonlinear par-
tial differential equations in physics and engineering. The computational domain is di-
vided into small regions, usually triangular or quadrilateral. These regions are delin-
cated with a finite number of nodes where the field variables—temperature. velocity,
pressure, stream function, etc.—are to be calculated. The solution in each region is ap-
proximated by an algebraic combination of local nodal values. Then the approximate
functions are integrated over the region, and their error is minimized, often by using a
weighting function. This process yields a set of NV algebraic equations for the N un-
known nodal values. The nodal equations are solved simultaneously, by matrix inver-
sion or iteration. For further details see Ref. 6 or 19.

3.17 Case Study: Numerical Solution of Flow Around a Cylinder:

In this section, we will analyze in more detail the irrotational flow field around a cylinder due to a
uniform flow. The cylinder is a bluff body whereas a wing that is well-oriented (small angle of
attack) with respect to flow is a slender body. In reality (in the sense of a real viscous fluid)
separation of the boundary layer with the formation of a wake will be unavoidable for the cylinder.
The irrotational solution cannot predict such phenomenon and the resulting flow field do not
resemble the real flow around a cylinder.

Given these, why do we study the irrotational flow around a cylinder? First of all, this flow is a
good example of an irrotational flow in a relatively complex geometry. Secondly, and most
important, because using conformal mapping we can transform the flow around a cylinder into the
flow around a Joukowski wing. If a wing profile is well oriented with respect to the uniform flow,
boundary layer separation is negligible and the pressure field obtained by means of the irrotational
flow solution can be considered as a good approximation of the actual pressure field. Therefore, the
resulting lift is in good agreement with experimental measurements. In the following sections
several animations show how the velocity and pressure fields vary as the circulation around the
cylinder is changed.

3.17.1 THE STREAMLINES:

The first animation is for the velocity field,
represented here in term of the stream function. For
a case of zero circulation, the velocity field is
symmetric with respect to the x-axis and the two
stagnation points lie at the intersections of the
cylinder and the x-axis (left figure). The animation

on the right shows the stream function as the %

circulation increases to a maximum and then
decreases to zero. The uniform flow is from right \_/

to left and the circulation is counterclockwise. You —_w
can see the stagnation points moving towards the T ]
lower face of the cylinder as circulation increases.
The streamlines become closely packed near the
upper face and less packed near the lower face,
indicating an acceleration on the upper face and a
deceleration on the lower face. In fact, the mass
flux in the stream tube defined by two adjacent streamlines is constant. When streamlines get closer
to each other, the flow is accelerating and vice versa.

Dr. Mohsen Soliman -72-



3.17.2 THE STREAKLINES:

The streaklines displayed in the following
animations are the result of an ideal
experiment in which a passive tracer (like
smoke) is injected in the flow, making the
path of ““marked" fluid particles visible.
This allows us to follow, in a Lagrangian
sense, the motion of the group of fluid
particles that have passed through the same
point. Since the flow 1is steady, the
trajectories of such particles (the
streaklines) are identical to the streamlines.
Changing periodically the color of all the
smoke sources allows for a visualization of

the time history of subsets of smoke
particles injected in the same time interval. When the colored lines become shorter, the marked
fluid particles are slowing down and vice versa. The grid of smoke sources is equally spaced in the
vertical direction and it is positioned far upstream from the body (at a distance of about 100 times
the radius of the cylinder), so that sources are not influenced by the body (uniform flow).
Animations have been realized for three increasing values of the circulation around the cylinder. In
the first animation, the circulation is zero and the flow is symmetrical with respect to the x-axis.
Note how the fluid particles closer to the cylinder are delayed with respect to those passing well
above (or below) the cylinder. This delay is not due to friction (we are dealing with an inviscid
fluid) but to the fact that near the stagnation points velocity tends to decelerate to zero speed. Due to
the symmetry of the flow field, if two particles start symmetrically with respect to the x-axis, they
will need the same amount of time to flow around the body.

When circulation is increased, the latter statement is not true anymore. Now, the fluid flowing
above the cylinder reaches the downstream section before the fluid flowing below the cylinder. It is
possible to demonstrate that the arrival times are the same only for two particles starting slightly
above and below the front stagnation point and flowing along the cylinder surface.
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In many elementary aerodynamics textbooks it is stated that, with non-zero circulation, the portion
of fluid flowing above the cylinder is accelerated with respect to the one flowing below it ““because
it must travel for a longer route to reach downstream in the same amount of time". In reality there is
no physical law imposing that the two fluid portions flowing above and below the cylinder (the
interface of which can be identified with the streamline passing through the two stagnation points)
must take the same time to travel around the cylinder. Indeed, looking at the second animation, it is
evident that far from the body, where the flow is essentially uniform, the ““above-the cylinder" fluid
reaches the left end of the window well before the ““below-the cylinder" fluid does. If we were
allowed to observe what happens far downstream, where the flow is certainly uniform again, we
would see that this configuration is somewhat “frozen" and the fluid particles which have been
delayed do not try in any way to catch up. In the cases examined so far, it is nevertheless still true
that two adjacent fluid particles that are separated by the body will become adjacent again once the
body is passed, since the arrival times of two particles flowing along the cylinder surface are the
same. In the case of flow around an airfoil even the latter statement is true only for a very peculiar
case.

3.17.3 THE VELOCITY FIELD:

The animation of the velocity vector field confirms what has been shown in the stream function
animation. When circulation is zero, the uniform stream approaching from the right divides into two
symmetric flows, one going over the cylinder, the other flowing under it. The two flows connect
again downstream of the cylinder. The flow field is symmetric with respect to the x-axis. Two fluid
particles immediately above and below the upstream stagnation point travel the same distance
around the cylinder and then meet again at the downstream stagnation point.

—

When circulation is increased, the stagnation points move towards the lower half of the cylinder so
that the two companion fluid particles follow different routes to reach the downstream stagnation
point. In particular the fluid particle that travels above the cylinder makes a longer route with

respect to its companion, but it travels fast enough to arrive at the same time at the downstream
stagnation point.

3.17.4 THE PRESSURE FIELD:

We can now evaluate the pressure field with the equivalence:

I)'_"""|llrxﬁ?:’_p|lw2

¥ 2¢ ¥ 2g
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Where £ indicates the reference value of the
pressure at infinity (where the flow is uniform).
In the picture, shown is the excess non-
dimensional pressure defined as :

a1 GG
When circulation is absent, the pressure field is
symmetric with respect to both the x and the y-
axes. On the stagnation points the excess
pressure is positive (which means an action
directed towards the body) while on the upper
and lower points the excess pressure is negative
(which means an action directed away from the
body). As circulation increases the pressure field

is still symmetric with respect to the y-axis but
becomes asymmetric with respect to the x-axis.

3.17.5 FORCES ACTING ON THE CYLINDER:

To understand the implication of the asymmetry of
the pressure field in terms of the forces acting on the
cylinder, the last animation shows the elementary
forces as vectors on the cylinder surface. Each
elementary force is given b

Y 8 Y4 = —pnels

Where p is pressure, his the normal unit vector
directed away from the surface and ds is the surface
arc. The resulting force (the vectorial sum of all the
elementary forces on the body) is clearly zero when
circulation is zero (D'Alambert paradox). As
circulation increases the component of the resulting
force in the direction of the uniform flow is still zero
(no drag), whereas a component in the direction
perpendicular to the uniform flow (lift) appears that
increases as circulation is enhanced. The modulus of the lift can be evaluated analytically (Kutta-
Joukowski theorem) and is . — S

3.18 FLOW AROUND AN AIRFOIL:

Before analyzing the velocity and pressure field for the case of an airfoil, we need to investigate a
little more deeply the role played by circulation. The Kutta-Joukowski theorem shows that lift is
proportional to circulation, but apparently the value of the circulation can be assigned arbitrarily.
The solution of flow around a cylinder tells us that we should expect to find two stagnation points
along the airfoil the position of which is determined by the circulation around the profile. There is a
particular value of the circulation that moves the rear stagnation point (V=0) exactly on the trailing
edge.

This condition, which fixes a value of the circulation by simple geometrical considerations is the
Kutta condition. Using Kutta condition the circulation is not anymore a free variable and it is
possible to evaluate the lift of an airfoil using the same techniques that were described for the
cylinder. Note that the flow fields obtained for a fixed value of the circulation are all valid solutions
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of the flow around an airfoil. The Kutta condition chooses one of these fields, one that represents
the best actual flow. We can try to give a feasible physical justification of the Kutta condition; to do
this we need to introduce a concept that is ignored by the theory for irrotational inviscid flow: the
role-played by the viscosity of a real fluid. Suppose we start from a static situation and give a small
velocity to the fluid. If the fluid is initially at rest it is also irrotational and, neglecting the effect of
viscosity, it must remain irrotational due to Thompson theorem. The flow field around the wing will
then have zero circulation, with two stagnation points located one on the lower face of the wing,
close to the leading edge, and one on the upper face, close to the trailing edge.

A very unlikely situation is created at the trailing
edge: a fluid particle on the lower side of the
airfoil should travel along the profile, make a
sharp U-turn at the trailing edge, go upstream on
the upper face until it reaches the stagnation R

point and then, eventually, leave the profile. A I e

real fluid cannot behave in this way. Viscosity ——/W_ﬂ
_\_\_‘_‘—\_‘_‘_‘_‘_‘-‘_‘_‘_'_._.-._'_'_'_,—.

acts to damp the sharp velocity gradient along
the profile causing a separation of the boundary  |— S
layer and a wake is created with shedding of - —
clockwise vorticity from the trailing edge.

Since the circulation along a curve that includes
both the vortex and the airfoil must still be zero,
this leads to a counterclockwise circulation around the profile. But if a nonzero circulation is
present around the profile, the stagnation points would move and in particular the rear stagnation
point would move towards the trailing edge. The sequence vortex shedding -> increase of
circulation around the airfoil -> downstream migration of the rear stagnation point continues until
the stagnation point reaches the trailing edge. When this happens the sharp velocity gradient
disappears and the vorticity shedding stops. This ““equilibrium" situation freezes the value of the
circulation around the airfoil, which would not change anymore. Let us now proceed to examine the
velocity and pressure fields around an airfoil with the aid of some animations showing how they
vary when the (effective) angle of attack is changed. In each shot the flow field is obtained
imposing the Kutta condition to determine the
circulation. A sequential browsing of the
following pages is suggested, at least for first
time visitors.

3.18.1 THE STREAMLINES: B

In the following animation the stream functionis pb———v--—-"r—"" . = |

plotted together with the streamlines. Direction »—/W_%
—_—_H_"""‘---._.__.--—_'_——.

of flow is from right to left and the angle of
attack is varied by rotating the airfoil. Note that, |
as the airfoil rotates, a streamline always leaves _ —
the trailing edge, indicating that Kutta condition —~
is imposed. Far from the airfoil the streamlines
tend to become horizontal, as expected for a
uniform flow.
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3.18.2 THE STREAKLINES:

In the following animations the streaklines generated by a set of smoke sources equally spaced in
the vertical direction and positioned far upstream of the airfoil are presented. The color of the
injected smoke has been changed at regular time steps so as to make the time history of the fluid
particles that have been ““marked" passing through each smoke source visible.

Three increasing values of the effective angle of
attack (0, 15 and 30 degrees, respectively) have
been chosen for the animations. The first animation
shows a smoke pattern similar to that observed for
the flow around a cylinder with no circulation.
Indeed, in this case the rear stagnation point is
naturally coincident with the trailing edge and the
Kutta condition is verified with zero circulation
around the airfoil. Note how the fluid particles
closer to the airfoil are delayed with respect to
those passing well above (or below) the airfoil.
Friction has no role here and this effect, as for the
cylinder, is due to the vanishing of velocity in the neighborhood of the stagnation points. Also note
how the two portions of fluid passing above and below the airfoil reach the left end section at the
same time. Two fluid particles flowing along the profile need the same time to travel above or
below the airfoil.

As the angle of attack, and so the circulation around the airfoil, is increased, the latter statement is
not true anymore, in the sense that fluid flowing above the airfoil reach the downstream section
earlier than the fluid traveling below it.

It can be demonstrated that in contrast to what happens for the cylinder, the traveling times are in this
case different also for fluid particles flowing along the airfoil surface, as it is evident looking at the
animations above and focusing on the neighborhood of the trailing edge. This effect is related to the
role played by the conformal transformation, which alters both the length of the path and the velocity
but not in a way to keep the traveling times of two particles flowing along the surface of the airfoil
equal. The fluid portion flowing below the airfoil is delayed with respect to the portion flowing

Dr. Mohsen Soliman -77-



above it, and the delay increases as the angle of attack (and so the circulation around the airfoil and,
as we will see, the lift) increases.
Stating that the fluid flowing above the
airfoil is accelerated with respect to the
fluid flowing below it ““because it must
travel for a longer route in the same
time" is then definitely wrong.

3.18.3 THE VELOCITY FIELD: |~

This animation shows again the flow
field, now described in terms of the
velocity vectors.

3.18.4 THE PRESSURE FIELD:

The pressure field shows positive
(reddish) values on the lower face of the
wing and negative (yellow-green-blue)
values on the upper face, thus leading to
a lift. Note that for large values of the
angle of attack a strong negative (blue)
peak of the pressure appears on the
upper face of the airfoil close to the
leading edge. As this negative peak
increases, the positive pressure gradient
downstream of it increases, a condition
that leads to boundary layer separation
on the upper face and consequently to a
sudden drop in the lift (stall).

3.18.5 FORCES ON AIRFOIL:

We now examine the forces acting on
the airfoil in terms of elementary forces
instead of pressure. While it is intuitive
that as the angle of attack increases the
lift increases, it is not easy to see that
the drag is always zero for the airfoil as
it was for the cylinder. This is because
the unit vector normal to the airfoil is
not simply radial as in the cylinder case.

3.19 Tailing and Railing Vortices:

On a clear day, trailing vortices are often seen in the sky following the passage of an airplane. The
vortices are formed because the wing develops lift. That is, the pressure on the top of the wing is
lower than on the bottom, and near the tips of the wing this pressure difference causes the air to
move around the edge from the bottom surface to the top. This results in a roll-up of the fluid,
which then forms the trailing vortex. In the sky, the vortex becomes visible when the air has a high
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humidity. The velocities inside the vortex can be very high, and the pressure is therefore quite low.
Water vapor in the air condenses as water droplets, and the droplets mark the presence of the
vortex. In the picture below of a crop-duster flying near the ground, the vortex is made visible by a
red flare placed on the ground. The red smoke is wrapped up by the trailing vortex
originating near the tip of the wing.

Plcture courtesy of DANTEC Measurement Technology o

The strength of the vortex is related to the amount of lift generated by the wing, so they become
particularly strong in high-lift conditions such as take-off and landing. They also increase in
strength with the size of the airplane, since the lift is equal to the weight of the airplane. For a large
transport airplane such as a 747, the vortices are strong enough to flip a small airplane if it gets too
close. Trailing vortices are therefore the principal reason for the time delay enforced by the FAA
between take-offs and landings at airports.

Railing vortices and downwash phenomenon of an aircraft in flight are seen clearly in the figure
below. In this situation, a Cessna Citation VI was flown immediately above the fog bank over Lake
Tahoe at approximately 313 km/h or 170 knots (B. Budzowski, Director of Flight Operations,
Cessna Aircraft Company, private communication, 1993). Aircraft altitude was about 122 m (400
ft) above the lake, and the weight was approximately 8400 kg. As the trailing vortices descended
over the fog layer due to the downwash, the flow field in the wake was made visible by the
distortion of the fog layer. The photo was taken by P. Bowen for the Cessna Aircraft Company from
the tail gun- ner's position in a B-25 flying in formation slightly above and ahead of the Cessna. The
aircraft is seen initiating a gentle climb after a level flight, leaving a portion of the fog layer yet
unaffected. The wingspan measured 16.3 m and the wing area was 29 m"2. The Reynolds number
based on the mean aerodynamic chord of 2.1 m was 1.1x1077. The figure below is extract from the
Gallery of Fluid Motion, Physics of Fluids A, Vol. 5, September 1993. Contribution by Hiroshi
Higuchi (Syracuse University).

Dr. Mohsen Soliman -79-



As seen above, fluid simulation from SAAB Aircraft shows phase lag between upper and lower air
parcels after an airfoil has passed. Air travels much faster over the top of the airfoil, and then it
never rejoins the air, which has traveled below. Note that the airfoil has deflected the air
downwards.

Another picture is seen above from the 1993 Aviation Week & Space Technology Photo
Contest. This came second in the Military category, and it was taken by James E. Hobbs, from
Lockheed Aircraft service Co., Ontario, California. The plane is ejecting flares during a test of an
infrared missile warning and self-protection system installed on a C-130 Hercules. The trailing
vortices formed in the wake are clearly visible. The size of these vortices is related to the lift
produced by the wings, and the photograph suggests that the aircraft was climbing during this
maneuver.
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This picture shows a SAAB JAS39 Gripen landing on a rainy roadbase. Downwash is made
evident by the foggy cloud above the runaway.

—

Some more downwash ... this is a French Transall deploying flares.
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Questions for the Oral Exam
Frictionless Flow ( Part 3)

I- If the stream function, ¥, is defined as W=f(x,y) or ¥=g(r,0). What is the physical and
mathematical meaning of these two functions. How can we get the stream function for a given flow
field V(x,y). What is the relationship between the stream function, ¥, and the vorticity vector (curl
of V), linear momentum equations, and the Bernolli’s equation in both real and ideal flows. Can we
define W=f(x,y,z) or ¥=g(r,0,z) for 3-D, steady, real viscous flow. Give some examples with
sketches for Y.

2- If an Eulerian velocity flow field is defined as V= f(t,x,y,z), Explain the physical and
mathematical meaning of this function. What do we mean by the total or substantial derivative?
How do we get the acceleration, a , of this field? What is the deference between local acceleration
and convective acceleration. In a steady flow, can the acceleration of the flow be non-zero? Explain
your answer with an example.

3- Discuss what is wrong in the following statements (use sketches if needed):
I. -The stream function, ¥, represents the mass conservation eqn. 3-D viscous flow.

II. -The value of W function must be constant for all streamlines in 3-D viscous flow.
III. -Values of ¥ function are the difference in the momentum flux between streamlines.
IV. -The Laplace equation, ¥ *P=0 represent the mass conservation equation for a 3-D

frictionless flow field and can be solved to get pressure distribution in that flow field.

4- If the potential function, @, is defined as ® =f(x,y) or ® =g(r,0). What is the physical and
mathematical meaning of these two functions. How can we get the potential function for a given
flow field V(x,y). What is the relationship between the potential function, @, and the vorticity vector
(curl of V), linear momentum equations, and the Bernolli’s equation in both real and ideal flows.
Can we define ® =f(x,y,z) or ® =g(r,0,z) for 3-D, steady, real viscous flow. Give some examples
with sketches for ©.

5- What do you know about Euler’s equations?. Discuss how can these equation be reduced to
Bernoulli’s equation along streamline in frictionless flow?. In a frictionless flow field, can we apply
Bernoulli’s equation everywhere in the flow? How?

6- Discuss what is wrong in the following statements (use sketches if needed)::
I. In 3-D viscous flow, the stream function, ¥, is parallel to the velocity potential function, @,
and both of them can be used to get the pressure distribution in the flow.
I. Euler’s equations represent the mass conservation for 2-D laminar flow where the no slip
condition (zero velocity at the wall) must be valid every where in the flow field.
III. In a 3-D viscous flow, the complex potential function is defined as W(z) = (¥ + 1 ®) where
z = (y +1 x) and the velocity can be obtained from dW/dz= (v + 1 u).

7- Discuss what is wrong in the following statements (use sketches if needed):
I. In a 3-D viscous, rotational flow, the complex potential function for a uniform stream in the
—ve x-axis direction is defined as W(z) = U, z "*
II. In a 3-D viscous, rotational flow, the complex potential function for a point source of
strength, Q, located at point z, is defined as W(z) = -(Q/2I1) In (z, - z) .
III. In a 3-D viscous, rotational flow, the complex potential function for a free, clockwise
vortex located at point z, is defined as W(z) = - (il'/2I1) In (z, - z) .
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8- In our study of Fluid Mechanics, we can use one of the following methods:
a- Differential analysis method
b- Integral analysis method
c- Dimensional analysis method with some experimental work

Explain very briefly those methods showing the main differences between them regarding the
reason for, and the output result of each method. Give an example for each method. Do we neglect
viscous effects in any of the above methods? Explain your answer.

9- In both real or ideal flow, define the physical meaning and the equation of (a) stream lines, (b)
the no-slip condition. Give some examples in both internal flows and external flows. What is the
difference between Ideal fluids or Newtonian fluids or Non-Newtonian fluids?.

10- Explain what do we mean by saying that the Eulerian Pressure scalar field is given as

P = f(t,x,y,z) or P = g(t,1,0,2)? What do we mean by the total or substantial derivative d/dt? How do
we get dP/dt of the field P = f(t,x,y,z)? What is the deference between local pressure derivative and
convective pressure derivative. In a steady flow, can the total or substantial pressure derivative of
the flow be a non-zero value? Explain your answer with an example.

11- Prove that the time-derivative operator (called total or substantial derivative) following a fluid
particle is: d/dt = 0/0t+ (V. ¥ ), where V¥ is the gradient operator.

12- What do you know about the conservation equations in Fluid Mechanics? Using the differential
analysis method, stat and discuss two of the main conservation equations of fluid mechanics. Show
all the non-linear terms in those equations. What is the divergence of the velocity vector field?. Can
we write the momentum equations for a Non-Newtonian fluid? How.

13- Using the cartesian coordinates, write down and discuss the meaning of each term and show all
the differences you know between the Navier-Stoke’s equations and the Euler’s equations. Can we
use Euler’s equations to solve the flow in long pipes? Why? What is the relation between Euler’s
equations and Bernolli’s equation?

14- The flow rate is 0.25 m*/s into a convergent nozzle of 0.6 m height at entrance and 0.3m height
at exit. Find the velocity, acceleration and pressure fields through the nozzle. (take the length of the
nozzle=1.5m)

15- The flow rate is 0.25 m’/s into a divergent nozzle of 0.3 m height at entrance and 0.6m height
at exit. Find the velocity, acceleration and pressure fields through the nozzle. (take the length of the
nozzle=1.5m)

16- Which of the following motions are kinematically possible for incompressible flow (k and Q
are constants): i) u=kx,v=ky,w=-2kz ii) V,=- Q/2JIr, Vo=k/2JI r 1) Vi=k cos 0 ,
Vo=-k sin 0

17- For a 2-D flow field in the xy-plane, the y component of the velocity is given by:
v = y* — 2x + 2y. Determine a possible x-component for a steady incompressible flow. Is it also
valid for unsteady flow? How many possible x-components are there? Why?.
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18- For a 2-D flow field in the xy-plane, the x component of the velocity is given by:
u = y* — 2x + 2y. Determine a possible y-component for a steady incompressible flow. Is it also
valid for unsteady flow? How many possible x-components are there? Why?.

19- Prove that the equation of continuity for 2-D incompressible flow in polar coordinates is in the
form: OV, /or + V,/r + 1/r (0Ve/00) =0

20- Explain the physical meaning and the mathematical equations for both the divergence operator
and the curl operator as applied on a vector field. Take the velocity field V as an example. (hint:
prove that the divergence of V = the rate of volume expansion of fluid element per unit initial
volume) . Prove also that for an incompressible velocity field, the divergence of V = 0. What is the
relationship between the curle of V and the rotation in the velocity field.

21- Examine the following functions to determine if they could represent the velocity potential for
an incompressible inviscid flow:
a) (I):2x+3y+4z2 b) ® =x +Xxy +Xxyz ¢)®=x"+ y2 +7°

22- The velocity potential of a steady field is given by the expression: ® = 2xy + y, and the
temperature is given by: T = x>+ 3xy + 2. Find both the local and the convective parts of the rate of
temperature change in this field.

23- Find the potential function, @, of a flow field such that the horizontal component of the
velocity varies linearly along the y-axis and has the value U, on the x-axis. What is the stream
function, Y, of this field.

24- Find the potential function, @, of a flow field such that the vertical component of the velocity
varies linearly along the x-axis and has the value V, on the y-axis. What is the stream function, ‘P,
of this field.

25- Velocity components of a 2-D flow are: u=k(y>-x*) & v=2kxy , find the stream function which
has W=0 at the origin. Find the potential function @, sketch both the ¥ and ® lines.

26- Velocity components of 2-D flow are: u:—A(yz—xz) & v=-2Axy, find the stream function which
has W=0 at the origin. Find the potential function @, sketch both the ¥ and ® lines.

27- The velocity potential of a 2-D flow is: ®=kxy, Find and sketch the stream lines Y.
28- The velocity potential of a 2-D flow is: ®=y+x’-y*, Find and sketch the stream lines P.

30- Find the exact equation for the stream lines ¥ of a flow of water around a 90° solid corner if
the velocity at the point (0,4) = +3 m/s. sketch both the ¥ and @ lines.
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10 Some velocity measurements in a three-dimensional
incompressible flow field indicate that u = 6xy* and
v = —4y?z. There is some conflicting data for the velocity com-
ponent in the 7 direction. One set of data indicates thatw = 4 }-‘:2,
and the other set indicates that w = 4}!7,2 — 6}-‘22,. ‘Which set do
you think is correct”? Explain.

11 The velocity components of an incompressible, two-
dimensional velocity field are given by the equations

i
v

2xy

2=y

e

Show that the flow is irrotational and satisfies conservation of
mass.

12 For each of the following stream functions, with units
of m%/s, determine the magnitude and the angle the velocity
vector makes with the x-axis at x = 1 m, y = 2 m. Locate any
stagnation points in the flow field.

(@) W =uxy
by w=-2x*+y

13 The stream function for a certain incompressible flow
field is

e = 10y + e ¥ sinx

Is this an irrotational flow field? Justify yvour answer with the

necessary calculations.

14
dimensional flow field is

e = ay® — bx

where a and b are constants. Is this an irrotational flow? Ex-

plain.
15 The velocity components for an incompressible, plane
flow are
v, = Ar ' + Br2cos#
vy = Br%sin#

where A and B are constants. Determine the corresponding

stream function.

16 For a certain two-dimensional flow field
u=10
v=V

(a) What are the corresponding radial and tangential velocity
components? (b) Determine the corresponding stream function
expressed in Cartesian coordinates and in cylindrical polar co-
ordinates.

The stream function for an incompressible, two-

17 Make use of the control volume shown in Fig. P .17
to derive the continuity equation in cylindrical coordinates

Volume element
has thickness d ;

X

B FIGURE P .17

I8 Ttis proposed that a two-dimensional, incompressible
flow field be described by the velocity components

u=Ay

v =Bx
where A and B are both positive constants. (a) Will the conti-
nuity equation be satisfied? (b) Is the flow irrotational? (c) De-
termine the equation for the streamlines and show a sketch of

the streamline that passes through the origin. Indicate the di-
rection of flow along this streamline.

19 In a certain steady, two-dimensional flow field the
fluid density varies linearly with respect to the coordinate x;
that is, p = Ax where A is a constant. If the x component of ve-
locity u is given by the equation u =y, defermine an expres-
sion for 2.
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20 In a two-dimensional, incompressible flow field,
the x component of velocity is given by the equation v = 2x,
(a) Determine the corresponding equation for the y component
of velocity if ¥ = 0 along the x axis. (b) For this flow field,
what is the magnitude of the average velocity of the fluid cross-
ing the surface OA of Fig. P .207 Assume that the velocities
are in feet per second when x and y are in feet.

v, ft
1.0 f———————— p A
|
|
|
|
|
|
!
o 1.0 x ft
B FIGURE P .20
21 The radial velocity component in an incompressible,

two-dimensional flow field (v, = 0) is
v, = 2r + 37 sin b

Determine the corresponding tangential velocity component, vy,
required to satisfy conservation of mass.

22 The stream function for an incompressible flow field
is given by the equation

gr= 37 v = }-‘3
where the stream function has the units of m*/s with x and vin
meters. (a) Sketch the streamline(s) passing through the origin.
(b) Determine the rate of flow across the straight path AB shown
in Fig. P .22.

v, m
1047
A
0 1.0 xm
B FIGURE P .22
23 The streamlines in a certain incompressible, two-

dimensional flow field are all concentric circles so that
v, = 0. Determine the stream function for (a) v, = Ar and for
(h) v, = Ar~', where A is a constant.

24 The stream function for an incompressible,
dimensional flow field is

two-

=3y +y

For this flow field, plot several streamlines.

25 The stream function for an incompressible, two-
dimensional flow field is
=2 sin3#

For this flow field, plot several streamlines for 0 = # = 7/3.

26 A two-dimensional flow field for a nonviscous, in-
compressible fluid is described by the velocity components

u=U;+ 2y
v=20

where Uy is a constant. If the pressure at the origin (Fig. P .26)
is pg. determine an expression for the pressure at (a) point A,
and (b) point B. Explain clearly how you obtained your answer.
Assume that the units are consistent and body forces may be
neglected.

v
RO, 1)
AL, O)
Po x
B FIGURE P .26
27 In a certain two-dimensional flow field, the velocity
is constant with components u = —4 ft/sand v = —2 ft/s. De-

termine the corresponding stream function and velocity poten-
tial for this flow field. Sketch the equipotential line ¢¢ = 0 which
passes through the origin of the coordinate system.

28 The velocity potential for a given two-dimensional
flow field is
¢ =G0 — 5
Show that the continuity equation is satisfied and determine the
corresponding stream function.
29 Determine the stream function corresponding to the
velocity potential

¢ =x — 3’
Sketch the streamline iy = 0, which passes through the origin.

30
tion

A certain flow field is described by the stream func-

i =Af8 4+ Brsin#

where A and B are positive constants. Determine the corre-
sponding velocity potential and locate any stagnation points in
this flow field.

31 It is known that the velocity distribution for two-
dimensional flow of a viscous fluid between wide parallel plates
(Fig. P .31) is parabolic; that is,

=i

with # = 0. Determine, if possible, the corresponding stream
function and velocity potential.

T

¢ ]
B FIGURE P .31
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32 The velocity potential for a certain inviscid flow field
is
¢ = —(3 — )

where ¢ has the units of ft*/s when x and v are in feet. Deter-
mine the pressure difference (in psi) between the points (1, 2)
and (4, 4), where the coordinates are in feet, if the fluid is wa-
ter and elevation changes are negligible.

6.33  Consider the incompressible, two-dimensional flow of
a nonviscous fluid between the boundaries shown in Fig, P 33.
The velocity potential for this flow field is

b = - y

(a) Determine the corresponding stream function. (b) What is
the relationship between the discharge, ¢ (per unit width nor-
mal to plane of paper), passing between the walls and the co-
ordinates x;, ; of any point on the curved wall? Neglect body
forces.

B FIGURE P .33

34 The stream function for a two-dimensional, nonvis-
cous, incompressible flow field is given by the expression

= =2(x—y)

where the stream function has the units of ft*/s with x and y in
feet. (a) Is the continuity equation satisfied? (b) Is the flow field
irrotational? It so, determine the corresponding velocity poten-
tial. (¢) Determine the pressure gradient in the horizontal x di-
rection at the point x = 2 ft. v = 2 ft.

35 In a certain steady, two-dimensional flow field the fluid
may be assumed to be ideal and the weight of the fluid (specific
weight = 50 Ib/ft*) is the only body force. The x component of
velocity is known to be u = 6x which gives the velocity in ft/s
when x is measured in feet, and the y component of velocity is
known to be a function of only y. The y axis is vertical, and at
the origin the velocity is zero. (a) Determine the y component
of velocity so that the continuity equation is satisfied. (b) Can
the difference in pressures between the points x = 1ft,y = [ ft
and x = 1 ft, y = 4 ft be determined from the Bernoulli equa-
tion? If so, determine the value in Ib/ft*. If not, explain why not.

36 The velocity potential for a certain inviscid, incom-
pressible flow field is given by the equation

¢ =20y = ()

where ¢ has the units of m*/s when x and y are in meters. De-
termine the pressure at the point x = 2 m, y = 2 m if the pres-
sure at x = 1 m, vy = 1 mis 200 kPa. Elevation changes can be
neglected, and the fluid is water.

37 (a) Determine the velocity potential and the stream
function for a steady, uniform, incompressible, inviscid, two-
dimensional flow that makes an angle of 30° with the horizon-
tal x-axis. (b) Determine an expression for the pressure gradi-
ent in the vertical y direction. What is the physical interpretation
of this result?

38 The streamlines for an incompressible, inviscid, two-
dimensional flow field are all concentric circles, and the veloc-
ity varies directly with the distance from the common center of
the streamlines; that is

v, = Kr

where K is a constant. (a) For this rotational flow, determine,
if possible, the stream function. (b) Can the pressure difference
between the origin and any other point be determined from the
Bernoulli equation? Explain.

39 The velocity potential

—k(x* =)

may be used to represent the flow against an infinite plane
boundary, as illustrated in Fig. P .39. For tlow in the vicinity
of a stagnation point, it is frequently assumed that the pressure
gradient along the surface is of the form

(k = constant)

where A is a constant. Use the given velocity potential to show
that this is true.

et

B FIGURE P .39

40 Water flows through a two-dimensional diffuser hav-
ing a 20° expansion angle, as shown in Fig. P .40. Assume that
the flow in the diffuser can be treated as a radial flow emanat-
ing from a source at the origin O. (a) If the velocity at the en-
trance is 20 m/s, determine an expression for the pressure gra-
dient along the diffuser walls. (b) What is the pressure rise
between the entrance and exit?

Diffuser wall
P 1
2m
-y

0 il T Flow |
|
II

En{N’
\/ Exit

B FIGURE P .40
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41
a two-dimensional channel into a sink located at the origin
(Fig. P .41). The velocity potential for this flow field is

¢ = LI_ln r
4
where m is a constant. (a) Determine the corresponding stream
function. Note that the value of the stream function along the
wall OA is zero. (b) Determine the equation of the streamline
passing through the point B, located at x = 1,y = 4,

B FIGURE P

42 It is suggested that the velocity potential for the flow
of an incompressible, nonviscous, two-dimensional flow along
the wall shown in Fig. P 42 is

¢ = rcosif

Is this a suitable velocity potential for flow along the wall?
Explain.

.41

B FIGURE P

43 As illustrated in Fig. P 43, a tornado can be approx-
imated by a free vortex of strength I" for r > R, where R, is
the radius of the core. Velocity measurements at points A and
B indicate that V, = 125 ft/s and V = 60 ft/s. Determine the
distance from point A to the center of the tornado. Why can the
free vortex model not be used to approximate the tornado
throughout the flow field (r = 0)?

.42

¥
///’_‘_“‘_H“‘\.\\ J
/ /N
/ == r A
/ N ! t
/
! [ R ] |
1\ \ ; A B~
Y \\ // /
\ - /
A /1001t
\\ //
~ -
B FIGURE P 43

44 The velocity distribution in a horizontal, two-dimen-

An ideal fluid flows between the inclined walls of gjonal bend through which an ideal fluid flows can be approx-

imated with a free vortex as shown in Fig. P .44. Show how
the discharge (per unit width normal to plane of paper) through
the channel can be expressed as

1N

where Ap = pp — p,s. Determine the value of the constant C
for the bend dimensions given.

’/A\
Ve
< _a
Vortex%

center
a=0.5m
b=0.9m

Hm FIGURE P .44

45 ‘When water discharges from a tank through an open-
ing in its bottom, a vortex may form with a curved surface pro-
file, as shown in Fig. P 45 and Video V .2. Assume that the
velocity distribution in the vortex is the same as that for a free
vortex. At the same time the water is being discharged from the
tank at point A, it is desired to discharge a small quantity of
water through the pipe B. As the discharge through A is in-
creased, the strength of the vortex, as indicated by its circula-
tion, is increased. Determine the maximum strength that the
vortex can have in order that no air is sucked in at B. Express
your answer in terms of the circulation. Assume that the tluid
level in the tank at a large distance from the opening at A re-
mains constant and viscous effects are negligible.

III IIl' A
1
.45

B FIGURE P

46 The streamlines in a particular two-dimensional flow
field are all concentric circles, as shown in Fig. P .46. The ve-
locity is given by the equation v, = wr where w is the angular
velocity of the rotating mass of fluid. Determine the circulation
around the path ABCD.

B FIGURE P

.46
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47 Water flows over a flat surface at 4 ft/s, as shown in
Fig. P 47. A pump draws off water through a narrow slit at a
volume rate of 0.1 ft*/s per foot length of the slit. Assume that
the fluid is incompressible and inviscid and can be represented
by the combination of a uniform flow and a sink. Locate the
stagnation point on the wall (point A) and determine the equa-
tion for the stagnation streamline. How far above the surface,
H, must the fluid be so that it does not get sucked into the slit?

4 fi's
—

= T3 —1

0.1t
{per foot of length of slit)

B FIGURE P .47

48 Consider two sources having equal strengths located
along the x axis at x = 0 and x = 2 m, and a sink located on
the y axis at y = 2 m. Determine the magnitude and direction
of the fluid velocny at x = 5m and y = 0 due to this combi-
nation if the flowrate from each of the sources is 0.5 m?/s pet
m and the flowrate into the sink is 1.0 m®/s per m.

49 The velocity potential for a spiral vortex tlow is given
by ¢ = (I'/27)6 — (m/27) In r, where I' and m are con-
stants. Show that the angle, «, between the velocity vector and
the radial direction is constant throughout the flow field (see
Fig. P .49).

e

=

B FIGURE P

.49

50 For a free vortex (see Video V .2) determine an ex-
pression for the pressure gradient (a) along a streamline, and
(b) normal to a streamline. Assume that the streamline is in a
horizontal plane, and express your answer in terms of the cir-
culation.

51 Potential flow against a flat plate (Fig. P 51a) can be
described with the stream function

e = Axy

where A is a constant. This type of flow is commonly called a
“stagnation point” flow since it can be used to describe the flow
in the vicinity of the stagnation point at O. By adding a source
of strength m at O, stagnation point flow against a flat plate
with a “bump” is obtained as illustrated in Fig. P .51b. Deter-
mine the relationship between the bump height, /, the constant,
A, and the source strength, m.
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32

.51

The combination of a uniform flow and a source can
be used to describe flow around a streamlined body called a halt-
body. (See Video V .3.) Assume that a certain body has the
shape of a half-body with a thickness of 0.5 m. If this body is
placed in an air stream moving at 15 m/s, what source strength
is required to simulate flow around the body?

53 A body having the general shape of a half-body is placed
in a stream of fluid. At a great distance upstream the velocity is U
as shown in Fig. P .53. Show how a measurement of the differ-
ential pressure between the stagnation point and point A can be
used to predict the free-stream velocity, U. Express the pressure
differential in terms of U and fluid density. Neglect body forces
and assume that the fluid is nonviscous and incompressible.

B FIGURE P

54 One end of a pond has a shoreline that resembles a
half-body as shown in Fig. P 54. A vertical porous pipe is lo-
cated near the end of the pond so that water can be pumped
out. When water is pumped at the rate of 0.08 m*/s through a
3-m-long pipe, what will be the velocity at point A? Hint: Con-
sider the flow inside a half-body. (See Video V. 3.)

53

5m

15m i
.54

B FIGURE



55 For the halt-body described in Section 3.2 , show
on a plot how the magnitude of the velocity on the sarface, V|,
varies as a function of the distance, s (measured along the sur-
face), from the stagnation point. Use the dimensionless vari-
ables V,/U and s/b where U and b are defined in Fig.3.24 .

56 Consider a uniform flow with velocity U in the pos-
itive x direction combined with two free vortices of equal
strength located along the y axis. Let one vortex located at
y =a be a clockwise vortex (y = KInr) and the other at
y = —a be a counterclockwise vortex, where K is a positive
constant. It can be shown by plotting streamlines that for
Ua/K < 2 the streamline & = 0 forms a closed contour, as
shown in Fig. P 56. Thus, this combination can be used to
represent flow around a family of bodies (called Kelvin
ovals). Show, with the aid of a graph, how the dimensionless
height, H/a, varies with the parameter Ua/K in the range
0.3 < Ua/K < 1.75.

¥
—_— I
;) Ua _,
U H
> a
Ya _,
— K
X
—
— a
—
D
_— ~
B FIGURE P 56

57 A Rankine oval is formed by combining a source-sink
pair, each having a strength of 36 ft/s and separated by a dis-
tance of 12 ft along the x axis, with a uniform velocity of 10 ft/s
(in the positive x direction). Determine the length and thickness
of the oval.

58 Make use of Eqs.3.108 and3.110 to construct a table
showing how {/a, h/a, and {/h for Rankine ovals depend on
the parameter 7Ua/m. Plot {/h versus wUa/m and describe
how this plot could be used to obtain the required values of m
and a for a Rankine oval having a specific value of ¢ and /A
when placed in a uniform fluid stream of velocity, U.

6.59  Assume that the flow around the long, circular cylin-
der of Fig. P .59 is nonviscous and incompressible. Two pres-
sures, p; and p,, are measured on the surface of the cylinder,
as illustrated. It is proposed that the free-stream velocity, U, can
be related to the pressure difference Ap = p; — p, by the equa-
tion
[Ap
U=Cy|—
\Vop

where p is the fluid density. Determine the value of the con-
stant C. Neglect body forces.

U’
—_—
—_—
—_—
—_—
—_—
—_—

B FIGURE P

.59

60 An ideal fluid flows past an infinitely long, semicir-
cular “hump” located along a plane boundary, as shown in
Fig. P 60. Far from the hump the velocity field is uniform, and
the pressure is p,. (a) Determine expressions for the maximum
and minimum values of the pressure along the hump, and in-
dicate where these points are located. Express your answer in
terms of p, U, and p,. (b) If the solid surface is the ¢y = 0
streamline, determine the equation of the streamline passing
through the point # = /2, r = 2a.

U, pg
f—
4—
r —
—
L=}
B FIGURE P .60
61 Water tlows around a 6-ft-diameter bridge pier with a

velocity of 12 ft/s. Estimate the force (per unit length) that the
water exerts on the pier. Assume that the flow can be approxi-
mated as an ideal fluid flow around the front half of the cylin-
der, but due to flow separation (see Video V .4), the average
pressure on the rear half is constant and approximately equal
to 13 the pressure at point A (see Fig. P 61).

- —
vetzts — o
—_—
i
B FIGURE P .61
62 Consider the steady potential flow around the circu-

lar cylinder shown in Fig.3.23 . On a plot show the variation of
the magnitude of the dimensionless fluid velocity, V/U. along
the positive y axis. At what distance, y/a (along the y axis), is
the velocity within 1% of the free-stream velocity?

63 The velocity potential for a cylinder (Fig. P .63) ro-
tating in a uniform stream of fluid is

2 r
)= Ur(l + ”—z)cosﬁ + —40
r T

where I is the circulation. For what value of the circulation will
the stagnation point be located at: (a) point A, (b) point B?
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64 A fixed circular cylinder of infinite length is placed in

a steady, uniform stream of an incompressible, nonviscous tluid.
Assume that the flow is irrotational. Prove that the drag on the
cylinder is zero. Neglect body forces.

65 Repeat Problem .64 for a rotating cylinder for which
the stream function and velocity potential are given by Egs.
3.121 and3.122, respectively. Verify that the lift is not zero and
can be expressed by Eq.3.128 .

66 A source of strength m is located a distance { from ¢
vertical solid wall as shown in Fig. P 66. The velocity poten-
tial for this incompressible, irrotational flow is given by

o {nf(x = 0F + 77
+ In[(x + ()" + ]}

(a) Show that there is no flow through the wall. (b) Determine
the velocity distribution along the wall. (¢)Determine the pres-
sure distribution along the wall, assuming p = p, far from the
source. Neglect the effect of the fluid weight on the pressure.

b =

Source

b

—

B FIGURE P .66

67 A long, porous pipe runs parallel to a horizontal plane
surface, as shown in Fig. P .67. The longitudinal axis of the
pipe is perpendicular to the plane of the paper. Water flows ra-
dially from the pipe at a rate of 0.5 7 ft*/s per foot of pipe. De-
termine the difference in pressure (in Ib/ft?) between point B
and point A. The flow from the pipe may be approximated by
a two-dimensional source. Hint: To develop the stream function
or velocity potential for this type of flow, place (symmetrically)
another equal source on the other side of the wall. With this
combination there is no flow across the x axis, and this axis can
be replaced with a solid boundary. This technique is called the
method of images.

T 4}% Pipe

3ft
B A

I
e a—

B FIGURE P .67

68 At a certain point at the beach, the coast line makes a
right angle bend, as shown in Fig.P 68a. The flow of salt wa-
ter in this bend can be approximated by the potential flow of
an incompressible fluid in a right-angle corner. (a) Show that
the stream function for this flow is & = A r?sin 26, where A is
a positive constant. (b) A fresh-water reservoir is located in the
corner. The salt water is to be kept away from the reservoir to
avoid any possible seepage of salt water into the fresh water
(Fig. P.68b). The fresh-water source can be approximated as a
line source having a strength m, where m is the volume rate of
flow (per unit length) emanating from the source. Determine m
if the salt water is not to get closer than a distance L to the cor-
ner. Hint: Find the value of m (in terms of A and L) so that a
stagnation point occurs at v = L. (¢) The streamline passing
through the stagnation point would represent the line dividing
the fresh water from the salt water. Plot this streamline.
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69 The two-dimensional velocity field for an incom-
pressible Newtonian fluid is described by the relationship

V = (12072 — 6%)i + (18x% — 47)j

where the velocity has units of m/s when x and y are in me-
ters. Determine the stresses o, o,,, and 7,, at the point
x=0.5m,y = 1.0 m if pressure at this point is 6 kPa and the
fluid is glycerin at 20 °C. Show these stresses on a sketch.

70 Typical inviscid flow solutions for flow around bod-
ies indicate that the fluid flows smoothly around the body, even
for blunt bodies as shown in Video V .4. However, experience
reveals that due to the presence of viscosity, the main flow may
actually separate from the body creating a wake behind the
body. As discussed in a later section (Section 9.2.6), whether
or not separation takes place depends on the pressure gradient
along the surface of the body, as calculated by inviscid flow
theory. If the pressure decreases in the direction of flow (a fa-
vorable pressure gradient), no separation will occur. However,
if the pressure increases in the direction of flow (an adverse
pressure gradient). separation may occur. For the circular cylin-
der of Fig. P .70 placed in a uniform stream with velocity. U/,
determine an expression for the pressure gradient in the direc-

tion flow on the surface of the cylinder. For what range of val-
ues for the angle # will an adverse pressure gradient occur?
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