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Part (3)*  
 

Frictionless Incompressible Flow 
 

Why Do we Study Frictionless Flow?: 
 

The effect of viscosity can be neglected in many parts of most real viscous flow fields 

especially for external flow fields. It was found that viscous effects are important only near 

any solid boundaries in a small thin layer called the boundary layer. 
 

3.1 Introduction and Review: 
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 Ref.:(1) Bruce R. Munson, Donald F. Young, Theodore H. Okiishi “Fundamental 

                of Fluid Mechanics” 4
th

 ed., John Wiley & Sons, Inc., 2002. 

 (2) Frank M. White “Fluid Mechanics”, 4
th

 ed. McGraw Hill, 2002. 
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3.1.1 Conservation of  Mass:  
From Part (1) we found the differential form of the mass conservation equation: 
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3.1.2 Stream Function: 

Also from Part (1) we defined the stream function, ψ,  for 2-D flow only  as: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

If we recall that the linear momentum equation is: 
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3.1.3 The Geometric Meaning of ψ : 
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Example 3.1: 
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Example 3.2: 
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3.1.4 Stream function for Steady Plane Compressible Flow: 
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3.1.5 Stream function for Incompressible Plane Flow in Polar Coordinates: 

 

 

 

 

 

 

 

 

 
 

 

3.1.6 Stream function for Incompressible  Axisymmetric Flow: 
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Example 3.3: 
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3.1.7  Graphical Superposition of Stream Functions of Plane Flows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

3.1.8 Vorticity and Irrotationality: 
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3.2 Conservation of Linear Momentum (Navier-Stokes Equations):  
 

Also from Part (1) we defined the Conservation of Linear Momentum as: 
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3.2.1 Irrotational Flow Fields: 
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3.2.2 Case of Frictionless and Irrotational Flow (Euler’s Equations): 
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3.2.3  The Velocity Potential, Φ : 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

3.2.4 The Orthogonality  of  Stream Lines and Potential Lines: 
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3.2.5  The Generation of Rotationality: 
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Example 3.4: 
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Example 3.5: 
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3.3 Some Illustrative Plane Potential Flows: 
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3.3.1 Uniform Flow: 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.2 Source and Sink: 
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Example 3.6: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.3 Vortex: 
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Circulation: 
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Example 3.7: 

 

 

 

 

 

 

 

 

 

 

 

 

 
Solution: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.4 Doublet: 
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Example 3.8: 
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Some Notes on the case of Rankine Half-body: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Boundary Layer Separation on Rankine half-body: 
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Example 3.9: 
 

 

 

 

 

 

 

 

 

 

 

Example 3.10: 
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3.4.2  A sink plus a Vortex at the Origin: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4.3 Flow Past a Vortex: 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Dr. Mohsen Soliman -37- 

 

 

 

 

 

 

 

 

 

 

 

 

3.4.4 An Infinite Row of Vortices: 
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3.4.5 The Vortex Sheet: 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

3.5 Rankine Ovals: 
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Example 3.11: 
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3.7 Flow Around a Cylinder with Circulation: 
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The Kutta-Joukowiski Lift Theorem: 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Experimental Lift and Drag of Rotating Cylinder: 
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Example 3.12: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E3.12 
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3.8 The Kelvin Oval: 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.9 Potential Flow Analogs: 
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Example 3.13: 
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3.10 Other Plane Potential Flows [The Complex Potential W(z)]: 
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Summary of Complex Potentials for Elementary Plane Flows: 
 

3.10.1 Uniform Stream at an Angle of Attack: 

 

 

 

 
 

 

3.10.2 Line Source at Point Zo: 

 

 

 

 

 

 

3.10.3 Line Vortex at Point Zo: 

 

 

 

 

 

 

3.10.4 Flow around a Corner of Arbitrary Angle : 
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   Fig. 3.30 Streamlines for Corner angle β of  a) 60
o
 , b) 90

 o
 , c) 120

 o
 , d) 270

 o
, and e) 360

 o 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.10.5 Flow Normal to a Flat Plate: 
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Fig.3.32 Streamlines in upper half-plane for flow normal to a flat plate of height 2a: 

a) continuous potential-flow theory;  b) actual measured flow pattern; 

c) discontinuous potential theory with k ≈ 1.5 
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3.10.6 Complex Potential of The Dipole Flow: 
 

We now analyze the case of the so-called 

hydrodynamic dipole, which results from the 

superposition of a source and a sink of equal 

intensity placed symmetrically with respect to the 

origin. The analogy with electromagnetism is 

evident. The magnetic field induced by a wire in which 

a current flows satisfies equations that are similar to 

those governing irrotational plane flows. The complex 

potential of a dipole is (if the source and the sink are  

positioned in (-a,0) and (a,0) respectively).  

Streamlines are circles, the center of which lie on the y-

axis and they converge obviously at the source and at 

the sink. Equipotential lines are circles, the center of 

which lie on the x-axis.  

Complex Potential of a  Doublet:  0.73.1 

A particular case of dipole is the so-called doublet, in 

which the quantity a tends to zero so that the source 

and sink both move towards the origin. The complex 

potential of a doublet is obtained making the limit of 

the dipole potential for vanishing a with the constraint 

that the intensity of the source and the sink must 

correspondingly tend to infinity as a approaches zero, 

the quantity  

Being constant (if we just superimpose a source and sink at the origin the resulting potential 

would be W=0)  
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Hint: develop ln (z+a) and ln(z-a) in a Taylor series in the neighborhood of the origin, 

assuming small a. 

  :CylinderA  low around F3.10.8 Complex Potential of  

The superposition of a doublet and a uniform flow 

gives the complex potential 

 

That is represented here in terms of streamlines and 

equipotential lines. Note that one of the streamlines 

is closed and surrounds the origin at a constant 

distance equal to  

Recalling the fact that, by definition, a streamline 

cannot be crossed by the fluid, this complex potential 

represents the irrotational flow around a cylinder of radius R approached by a uniform flow 

with velocity U. Moving away from the body, the effect of the doublet decreases so that far 

from the cylinder we find, as expected, the undisturbed uniform flow. In the two 

intersections of the x-axis with the cylinder, the velocity is found to be zero. These two 

points are thus called stagnation points.  

 :FLOW AROUND A CYLINDER WITH NONZERO CIRCULATION3.10.9  

In the last example, we superimpose to the 

complex potential that gives the flow 

around a cylinder a vortex of intensity  

positioned at the center of the cylinder. The 

resulting 

potential 

is  

The presence of the vortex does not alter 

the streamline describing the cylinder, 

while the two stagnation points below the x-

axis. The streamlines are closer to each 

other on the upper part of the cylinder and 

more distant on the lower part. This 

indicates that the flow is accelerated on the 

upper face of the cylinder and decelerated 

on the lower part, with respect to the zero circulation case. The resulting flow field 

corresponds to the case of a rotating cylinder, which accelerates (with respect to the case of 

no circulation) fluid particles on part of the cylinder and decelerates them on the remainder 

of the cylinder. Note the presence of a discontinuity in the potential function (thick yellow 

line on the left) that is related to the fact that the vortex potential (as mentioned in a 

previous section) has a nonzero cyclic constant.  
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3.11 The Method of Images: 
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Example 3.14: 
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3.12  Axisymmetric Potential Flows: 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

3.12.1 Spherical Polar Coordinates: 
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3.12.2 Uniform Stream in the x-direction: 

 

 

 

 

 
 

 

3.12.3 Point Source or Sink: 

 

 

 

 

 

 

 

 

 

3.12.4 Point Doublet: 
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 3.12.5 Uniform Stream Plus a Point Source: 

 

 

 

 

 
 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

3.12.6 Uniform Stream Plus a point Doublet (Flow Around a Sphere): 
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3.13 The Concept of Hydrodynamic Mass: 
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3.15  Additional Advanced Potential Flows 

Up to this point, we do not have any particular convenience in representing the flow in the complex 

plane. The full potential of this choice will become clear as soon as we introduce conformal 

mapping techniques. Let the following function 

Be an analytic function. It follows that also the inverse function z (z') is analytic. Consider the two 

planes z and  

The above function creates a link between a point in the z plane and a point in the z' plane. We can 

state that it maps one plane to the other. This transformation is said to be conformal because it does 

not affect angles, in the sense that given two lines in the z plane that intersect with some angle, the 

two transformed lines in the z' plane intersect with the same angle. In particular, two orthogonal 

families of curves in the z plane map into two other orthogonal families of curves in the z' plane. It 

follows that a conformal transformation maps equipotential and stream lines of an irrotational flow 

in the z plane into the corresponding lines of another irrotational flow in the z' plane.  

Given a flow field in the z plane with complex potentialW (z), the function: 

Is analytic because both W (z) and z (z') are analytic. In other words, the derivative 
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Exists and is unique because the derivatives on the right hand side exist and are unique. Therefore, 

W' is the complex potential of an irrotational inviscid flow in the z' plane. If P and P' are two 

corresponding points in the z and z' planes, respectively,  

 

And So that the two complex potentials W and W' assume the same value in corresponding points of 

the two domains.Circulation along any (corresponding) closed line has also the same value in the 

two spaces because it is given by the integrals  

That are equal because along the two lines C and C', the potentials assume the same value.Among 

the conformal transformations, the Joukowski transformation is relevant for the study of flow 

around a wing, because it maps the domain around a cylinder into the domain around a wing, whose 

thickness and curvature can be varied.  

: ransformationT oukowski J he T 
  

We introduce the conformal transformation due to Joukowski (who is pictured 

above)  

And analyze how a cylinder of radius R defined in the z plane maps into the z' plane:  

1. If the circle is centered at (0, 0) and λ = R  the circle maps into the segment between 

-2λ and +2λ lying on the x-axis;  

2. If the circle is centered at (xc ,0) and λ = R - xc , the circle maps in an airfoil that is 

symmetric with respect to the x'-axis;  

3. If the circle is centered at (0, yc)  and λ =√ (R
2
 – y

2
c), the circle maps into a curved 

segment;  

4. If the circle is centered at (xc , yc) and λ = - xc +√ (R
2
 – y

2
c), , the circle maps into an 

asymmetric airfoil.  

To summarize, moving the center of the circle along the x-axis gives thickness to the airfoil, 

moving the center of the circle along the y-axis gives camber to the airfoil. In the following 

interactive application it is possible to move the center of the circle in the z plane and see 

the resulting transformed airfoil. The site is (http: www.diam.unige.it/ ) We need to 

introduce some notations on airfoils.  
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The generic Joukowski airfoil has a rounded leading edge and a cusp at the trailing edge 

where the camber line forms an angle 2 β with the chord line. In the cylinder plane, β is 

related to the vertical coordinate of the center of the cylinder so that  

Usually the angle of attack (sometimes called physical) is defined as the angle that the 

uniform flow forms with the chord line. More interesting for aerodynamics is the angle  

In fact, when the angle  is zero, the lift, as will be shown, vanishes. Then the angle     is 

often defined as the effective angle of attack. 
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3.16.1 Numerical Methods: 
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Example 3.15: on Numerical Methods: 
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3.16.2 The Finite Difference Method: 
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Example 3.16 (Also on Numerical Methods): 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Dr. Mohsen Soliman -70- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Dr. Mohsen Soliman -71- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Dr. Mohsen Soliman -72- 

3.16.3 The Finite Element Method: 

 

 

 

 

 

 

 
 

:Numerical Solution of Flow Around a Cylinder :ase StudyC3.17  

In this section, we will analyze in more detail the irrotational flow field around a cylinder due to a 

uniform flow. The cylinder is a bluff body whereas a wing that is well-oriented (small angle of 

attack) with respect to flow is a slender body. In reality (in the sense of a real viscous fluid) 

separation of the boundary layer with the formation of a wake will be unavoidable for the cylinder. 

The irrotational solution cannot predict such phenomenon and the resulting flow field do not 

resemble the real flow around a cylinder.  

Given these, why do we study the irrotational flow around a cylinder? First of all, this flow is a 

good example of an irrotational flow in a relatively complex geometry. Secondly, and most 

important, because using conformal mapping we can transform the flow around a cylinder into the 

flow around a Joukowski wing. If a wing profile is well oriented with respect to the uniform flow, 

boundary layer separation is negligible and the pressure field obtained by means of the irrotational 

flow solution can be considered as a good approximation of the actual pressure field. Therefore, the 

resulting lift is in good agreement with experimental measurements. In the following sections 

several animations show how the velocity and pressure fields vary as the circulation around the 

cylinder is changed. 

: THE STREAMLINES3.17.1  

The first animation is for the velocity field, 

represented here in term of the stream function. For 

a case of zero circulation, the velocity field is 

symmetric with respect to the x-axis and the two 

stagnation points lie at the intersections of the 

cylinder and the x-axis (left figure). The animation 

on the right shows the stream function as the 

circulation increases to a maximum and then 

decreases to zero. The uniform flow is from right 

to left and the circulation is counterclockwise. You 

can see the stagnation points moving towards the 

lower face of the cylinder as circulation increases. 

The streamlines become closely packed near the 

upper face and less packed near the lower face, 

indicating an acceleration on the upper face and a 

deceleration on the lower face. In fact, the mass 

flux in the stream tube defined by two adjacent streamlines is constant. When streamlines get closer 

to each other, the flow is accelerating and vice versa. 
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: THE STREAKLINES3.17.2  

The streaklines displayed in the following 

animations are the result of an ideal 

experiment in which a passive tracer (like 

smoke) is injected in the flow, making the 

path of ``marked'' fluid particles visible. 

This allows us to follow, in a Lagrangian 

sense, the motion of the group of fluid 

particles that have passed through the same 

point. Since the flow is steady, the 

trajectories of such particles (the 

streaklines) are identical to the streamlines. 

Changing periodically the color of all the 

smoke sources allows for a visualization of 

the time history of subsets of smoke 

particles injected in the same time interval. When the colored lines become shorter, the marked 

fluid particles are slowing down and vice versa. The grid of smoke sources is equally spaced in the 

vertical direction and it is positioned far upstream from the body (at a distance of about 100 times 

the radius of the cylinder), so that sources are not influenced by the body (uniform flow). 

Animations have been realized for three increasing values of the circulation around the cylinder. In 

the first animation, the circulation is zero and the flow is symmetrical with respect to the x-axis. 

Note how the fluid particles closer to the cylinder are delayed with respect to those passing well 

above (or below) the cylinder. This delay is not due to friction (we are dealing with an inviscid 

fluid) but to the fact that near the stagnation points velocity tends to decelerate to zero speed. Due to 

the symmetry of the flow field, if two particles start symmetrically with respect to the x-axis, they 

will need the same amount of time to flow around the body.  

When circulation is increased, the latter statement is not true anymore. Now, the fluid flowing 

above the cylinder reaches the downstream section before the fluid flowing below the cylinder. It is 

possible to demonstrate that the arrival times are the same only for two particles starting slightly 

above and below the front stagnation point and flowing along the cylinder surface. 
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In many elementary aerodynamics textbooks it is stated that, with non-zero circulation, the portion 

of fluid flowing above the cylinder is accelerated with respect to the one flowing below it ``because 

it must travel for a longer route to reach downstream in the same amount of time''.  In reality there is 

no physical law imposing that the two fluid portions flowing above and below the cylinder (the 

interface of which can be identified with the streamline passing through the two stagnation points) 

must take the same time to travel around the cylinder. Indeed, looking at the second animation, it is 

evident that far from the body, where the flow is essentially uniform, the ``above-the cylinder'' fluid 

reaches the left end of the window well before the ``below-the cylinder'' fluid does. If we were 

allowed to observe what happens far downstream, where the flow is certainly uniform again, we 

would see that this configuration is somewhat ``frozen'' and the fluid particles which have been 

delayed do not try in any way to catch up. In the cases examined so far, it is nevertheless still true 

that two adjacent fluid particles that are separated by the body will become adjacent again once the 

body is passed, since the arrival times of two particles flowing along the cylinder surface are the 

same. In the case of flow around an airfoil even the latter statement is true only for a very peculiar 

case.  

THE VELOCITY FIELD: 3.17.3  

The animation of the velocity vector field confirms what has been shown in the stream function 

animation. When circulation is zero, the uniform stream approaching from the right divides into two 

symmetric flows, one going over the cylinder, the other flowing under it. The two flows connect 

again downstream of the cylinder. The flow field is symmetric with respect to the x-axis. Two fluid 

particles immediately above and below the upstream stagnation point travel the same distance 

around the cylinder and then meet again at the downstream stagnation point.  

When circulation is increased, the stagnation points move towards the lower half of the cylinder so 

that the two companion fluid particles follow different routes to reach the downstream stagnation 

point. In particular the fluid particle that travels above the cylinder makes a longer route with 

respect to its companion, but it travels fast enough to arrive at the same time at the downstream 

stagnation point.  

: THE PRESSURE FIELD3.17.4  

We can now evaluate the pressure field with the equivalence:  



 

Dr. Mohsen Soliman -75- 

Where  indicates the reference value of the 

pressure at infinity (where the flow is uniform). 

In the picture, shown is  the excess non-

dimensional pressure defined as : 

 

When circulation is absent, the pressure field is 

symmetric with respect to both the x and the y-

axes. On the stagnation points the excess 

pressure is positive (which means an action 

directed towards the body) while on the upper 

and lower points the excess pressure is negative 

(which means an action directed away from the 

body). As circulation increases the pressure field 

is still symmetric with respect to the y-axis but 

becomes asymmetric with respect to the x-axis.  

: LINDERFORCES ACTING ON THE CY3.17.5  

To understand the implication of the asymmetry of 

the pressure field in terms of the forces acting on the 

cylinder, the last animation shows the elementary 

forces as vectors on the cylinder surface. Each 

elementary force is given by 

Where p is pressure, is the normal unit vector 

directed away from the surface and ds is the surface 

arc. The resulting force (the vectorial sum of all the 

elementary forces on the body) is clearly zero when 

circulation is zero (D'Alambert paradox). As 

circulation increases the component of the resulting 

force in the direction of the uniform flow is still zero 

(no drag), whereas a component in the direction 

perpendicular to the uniform flow (lift) appears that 

increases as circulation is enhanced. The modulus of the lift can be evaluated analytically (Kutta-

Joukowski theorem) and is  

3.18 FLOW AROUND AN AIRFOIL:  

Before analyzing the velocity and pressure field for the case of an airfoil, we need to investigate a 

little more deeply the role played by circulation. The Kutta-Joukowski theorem shows that lift is 

proportional to circulation, but apparently the value of the circulation can be assigned arbitrarily. 

The solution of flow around a cylinder tells us that we should expect to find two stagnation points 

along the airfoil the position of which is determined by the circulation around the profile. There is a 

particular value of the circulation that moves the rear stagnation point (V=0) exactly on the trailing 

edge.  

This condition, which fixes a value of the circulation by simple geometrical considerations is the 

Kutta condition. Using Kutta condition the circulation is not anymore a free variable and it is 

possible to evaluate the lift of an airfoil using the same techniques that were described for the 

cylinder. Note that the flow fields obtained for a fixed value of the circulation are all valid solutions 
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of the flow around an airfoil. The Kutta condition chooses one of these fields, one that represents 

the best actual flow. We can try to give a feasible physical justification of the Kutta condition; to do 

this we need to introduce a concept that is ignored by the theory for irrotational inviscid flow: the 

role-played by the viscosity of a real fluid. Suppose we start from a static situation and give a small 

velocity to the fluid. If the fluid is initially at rest it is also irrotational and, neglecting the effect of 

viscosity, it must remain irrotational due to Thompson theorem. The flow field around the wing will 

then have zero circulation, with two stagnation points located one on the lower face of the wing, 

close to the leading edge, and one on the upper face, close to the trailing edge.  

A very unlikely situation is created at the trailing 

edge: a fluid particle on the lower side of the 

airfoil should travel along the profile, make a 

sharp U-turn at the trailing edge, go upstream on 

the upper face until it reaches the stagnation 

point and then, eventually, leave the profile. A 

real fluid cannot behave in this way. Viscosity 

acts to damp the sharp velocity gradient along 

the profile causing a separation of the boundary 

layer and a wake is created with shedding of 

clockwise vorticity from the trailing edge.  

Since the circulation along a curve that includes 

both the vortex and the airfoil must still be zero, 

this leads to a counterclockwise circulation around the profile. But if a nonzero circulation is 

present around the profile, the stagnation points would move and in particular the rear stagnation 

point would move towards the trailing edge. The sequence vortex shedding -> increase of 

circulation around the airfoil -> downstream migration of the rear stagnation point continues until 

the stagnation point reaches the trailing edge. When this happens the sharp velocity gradient 

disappears and the vorticity shedding stops. This ``equilibrium'' situation freezes the value of the 

circulation around the airfoil, which would not change anymore. Let us now proceed to examine the 

velocity and pressure fields around an airfoil with the aid of some animations showing how they 

vary when the (effective) angle of attack is changed. In each shot the flow field is obtained 

imposing the Kutta condition to determine the 

circulation. A sequential browsing of the 

following pages is suggested, at least for first 

time visitors.  

3.18.1 THE STREAMLINES: 

In the following animation the stream function is 

plotted together with the streamlines. Direction 

of flow is from right to left and the angle of 

attack is varied by rotating the airfoil. Note that, 

as the airfoil rotates, a streamline always leaves 

the trailing edge, indicating that Kutta condition 

is imposed. Far from the airfoil the streamlines 

tend to become horizontal, as expected for a 

uniform flow.  
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THE STREAKLINES:.18.2 3 

In the following animations the streaklines generated by a set of smoke sources equally spaced in 

the vertical direction and positioned far upstream of the airfoil are presented. The color of the 

injected smoke has been changed at regular time steps so as to make the time history of the fluid 

particles that have been ``marked'' passing through each smoke source visible.  

Three increasing values of the effective angle of 

attack (0, 15 and 30 degrees, respectively) have 

been chosen for the animations. The first animation 

shows a smoke pattern similar to that observed for 

the flow around a cylinder with no circulation. 

Indeed, in this case the rear stagnation point is 

naturally coincident with the trailing edge and the 

Kutta condition is verified with zero circulation 

around the airfoil. Note how the fluid particles 

closer to the airfoil are delayed with respect to 

those passing well above (or below) the airfoil. 

Friction has no role here and this effect, as for the 

cylinder, is due to the vanishing of velocity in the neighborhood of the stagnation points. Also note 

how the two portions of fluid passing above and below the airfoil reach the left end section at the 

same time. Two fluid particles flowing along the profile need the same time to travel above or 

below the airfoil.  

As the angle of attack, and so the circulation around the airfoil, is increased, the latter statement is 

not true anymore, in the sense that fluid flowing above the airfoil reach the downstream section 

earlier than the fluid traveling below it.  

  

It can be demonstrated that in contrast to what happens for the cylinder, the traveling times are in this 

case different also for fluid particles flowing along the airfoil surface, as it is evident looking at the 

animations above and focusing on the neighborhood of the trailing edge. This effect is related to the 

role played by the conformal transformation, which alters both the length of the path and the velocity 

but not in a way to keep the traveling times of two particles flowing along the surface of the airfoil 

equal. The fluid portion flowing below the airfoil is delayed with respect to the portion flowing 
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above it, and the delay increases as the angle of attack (and so the circulation around the airfoil and, 

as we will see, the lift) increases. 

Stating that the fluid flowing above the 

airfoil is accelerated with respect to the 

fluid flowing below it ``because it must 

travel for a longer route in the same 

time'' is then definitely wrong.  

 

: THE VELOCITY FIELD3.18.3  

This animation shows again the flow 

field, now described in terms of the 

velocity vectors.     

3.18.4 THE PRESSURE FIELD:  

The pressure field shows positive 

(reddish) values on the lower face of the 

wing and negative (yellow-green-blue) 

values on the upper face, thus leading to 

a lift. Note that for large values of the 

angle of attack a strong negative (blue) 

peak of the pressure appears on the 

upper face of the airfoil close to the 

leading edge. As this negative peak 

increases, the positive pressure gradient 

downstream of it increases, a condition 

that leads to boundary layer separation 

on the upper face and consequently to a 

sudden drop in the lift (stall).  

: ORCES ON  AIRFOIL3.18.5 F 

We now examine the forces acting on 

the airfoil in terms of elementary forces 

instead of pressure. While it is intuitive 

that as the angle of attack increases the 

lift increases, it is not easy to see that 

the drag is always zero for the airfoil as 

it was for the cylinder. This is because 

the unit vector normal to the airfoil is 

not simply radial as in the cylinder case.  

3.19 Tailing and Railing Vortices: 
 

On a clear day, trailing vortices are often seen in the sky following the passage of an airplane. The 

vortices are formed because the wing develops lift. That is, the pressure on the top of the wing is 

lower than on the bottom, and near the tips of the wing this pressure difference causes the air to 

move around the edge from the bottom surface to the top. This results in a roll-up of the fluid, 

which then forms the trailing vortex. In the sky, the vortex becomes visible when the air has a high 
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humidity. The velocities inside the vortex can be very high, and the pressure is therefore quite low. 

Water vapor in the air condenses as water droplets, and the droplets mark the presence of the 

vortex. In the picture below of a crop-duster flying near the ground, the vortex is made visible by a 

red flare placed on the ground. The red smoke is wrapped up by the trailing vortex 

originating near the tip of the wing.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Picture courtesy of DANTEC Measurement Technology. 
 

The strength of the vortex is related to the amount of lift generated by the wing, so they become 

particularly strong in high-lift conditions such as take-off and landing. They also increase in 

strength with the size of the airplane, since the lift is equal to the weight of the airplane. For a large 

transport airplane such as a 747, the vortices are strong enough to flip a small airplane if it gets too 

close. Trailing vortices are therefore the principal reason for the time delay enforced by the FAA 

between take-offs and landings at airports.  

 

Railing vortices and downwash phenomenon of an aircraft in flight are seen clearly in the figure 

below. In this situation, a Cessna Citation VI was flown immediately above the fog bank over Lake 

Tahoe at approximately 313 km/h or 170 knots (B. Budzowski, Director of Flight Operations, 

Cessna Aircraft Company, private communication, 1993). Aircraft altitude was about 122 m (400 

ft) above the lake, and the weight was approximately 8400 kg. As the trailing vortices descended 

over the fog layer due to the downwash, the flow field in the wake was made visible by the 

distortion of the fog layer. The photo was taken by P. Bowen for the Cessna Aircraft Company from 

the tail gun- ner's position in a B-25 flying in formation slightly above and ahead of the Cessna. The 

aircraft is seen initiating a gentle climb after a level flight, leaving a portion of the fog layer yet 

unaffected. The wingspan measured 16.3 m and the wing area was 29 m^2. The Reynolds number 

based on the mean aerodynamic chord of 2.1 m was 1.1x10^7. The figure below is extract from the 

Gallery of Fluid Motion, Physics of Fluids A, Vol. 5, September 1993. Contribution by Hiroshi 

Higuchi (Syracuse University).  
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Photo courtesy of Cessna Aircraft Company. 

 

As seen above, fluid simulation from SAAB Aircraft shows phase lag between upper and lower air 

parcels after an airfoil has passed. Air travels much faster over the top of the airfoil, and then it 

never rejoins the air, which has traveled below. Note that the airfoil has deflected the air 

downwards.  

Another picture is seen above from the 1993 Aviation Week & Space Technology Photo 

Contest. This came second in the Military category, and it was taken by James E. Hobbs, from 

Lockheed Aircraft service Co., Ontario, California. The plane is ejecting flares during a test of an 

infrared missile warning and self-protection system installed on a C-130 Hercules. The trailing 

vortices formed in the wake are clearly visible. The size of these vortices is related to the lift 

produced by the wings, and the photograph suggests that the aircraft was climbing during this 

maneuver. 
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This picture shows a SAAB JAS39 Gripen landing on a rainy roadbase. Downwash is made 

evident by the foggy cloud above the runaway. 

 

 

Some more downwash ... this is a French Transall deploying flares. 
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Questions for the Oral Exam 
 

Frictionless Flow ( Part 3) 

 

1- If the stream function, Ψ, is defined as Ψ=f(x,y) or Ψ=g(r,θ). What is the physical and 

mathematical  meaning of these two functions. How can we get the stream function for a given flow 

field V(x,y). What is the relationship between the stream function, Ψ, and the vorticity vector  (curl 

of V), linear momentum equations, and the Bernolli’s equation in both real and ideal flows. Can we 

define Ψ=f(x,y,z) or Ψ=g(r,θ,z) for 3-D, steady, real viscous flow. Give some examples with 

sketches for  Ψ. 

-------------------------------------------------------------------------------------------------------- 

2- If an Eulerian velocity flow field is defined as V= f(t,x,y,z), Explain the physical and 

mathematical meaning of this function. What do we mean by the total or substantial derivative? 

How do we get the acceleration, a , of this field? What is the deference between local acceleration 

and convective acceleration. In a steady flow, can the acceleration of the flow be non-zero? Explain 

your answer with an example. 

-------------------------------------------------------------------------------------------------------- 

3- Discuss what is wrong in the following statements (use sketches if needed): 

I. -The stream function, Ψ, represents the mass conservation eqn. 3-D viscous flow. 

II. -The value of  Ψ function must be constant for all streamlines in 3-D viscous flow. 

III. -Values of Ψ function are the difference in the momentum flux between streamlines. 

IV. -The Laplace equation,▼
2
Ψ=0 represent the mass conservation equation for a 3-D 

frictionless flow field and can be solved to get pressure distribution in that flow field. 

---------------------------------------------------------------------------------------------------------------- 

4- If the potential function, Φ, is defined as Φ =f(x,y) or Φ =g(r,θ). What is the physical and 

mathematical  meaning of these two functions. How can we get the potential function for a given 

flow field V(x,y). What is the relationship between the potential function, Φ, and the  vorticity vector  

(curl of V), linear momentum equations, and the Bernolli’s equation in both real and ideal flows. 

Can we define Φ =f(x,y,z) or Φ =g(r,θ,z) for 3-D, steady, real viscous flow. Give some examples 

with sketches for Φ. 

---------------------------------------------------------------------------------------------------------------- 

5- What do you know about Euler’s equations?. Discuss how can these equation be reduced to 

Bernoulli’s equation along streamline in frictionless flow?. In a frictionless flow field, can we apply 

Bernoulli’s equation everywhere in the flow? How? 

--------------------------------------------------------------------------------------------------------    

6- Discuss what is wrong in the following statements (use sketches if needed):: 

I. In 3-D viscous flow, the stream function, Ψ, is parallel to the velocity potential function, Φ, 

and both of them can be used to get the pressure distribution in the flow.  

II. Euler’s equations represent the mass conservation for 2-D laminar flow where the no slip 

condition (zero velocity at the wall) must be valid every where in the flow field.  

III. In a 3-D viscous flow, the complex potential  function is defined as W(z) = (Ψ + i Φ) where 

z = (y + i x) and the velocity can be obtained from dW/dz= (v + i u). 

-------------------------------------------------------------------------------------------------------- 

7- Discuss what is wrong in the following statements (use sketches if needed): 

I. In a 3-D viscous, rotational flow, the complex potential  function for a uniform stream in the 

–ve x-axis direction is defined as W(z) = U∞ z e
iα

 

II. In a 3-D viscous, rotational flow, the complex potential  function for a point source of 

strength, Q, located at point zo is defined as W(z) = -(Q/2Π)  ln (zo - z) . 

III. In a 3-D viscous, rotational flow, the complex potential  function for a free, clockwise 

vortex located at point zo is defined as W(z) = - (iΓ/2Π)  ln (zo - z) . 
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8- In our study of Fluid Mechanics, we can use one of the following methods: 

 a- Differential analysis method 

 b- Integral analysis method 

 c- Dimensional analysis method with some experimental work 

Explain very briefly those methods showing the main differences between them regarding the 

reason for, and the output result of each method. Give an example for each method. Do we neglect 

viscous effects in any of the above methods? Explain your answer. 

------------------------------------------------------------------------------------------------  

9- In both real or ideal flow, define the physical meaning and the equation of (a) stream lines, (b) 

the no-slip condition. Give some examples in both internal flows and external flows. What is the 

difference between Ideal fluids or Newtonian fluids or Non-Newtonian fluids?.  

------------------------------------------------------------------------------------------------------- 

10- Explain what do we mean by saying that the Eulerian Pressure scalar field is given as 

P = f(t,x,y,z) or P = g(t,r,θ,z)? What do we mean by the total or substantial derivative d/dt? How do 

we get dP/dt of the field P = f(t,x,y,z)? What is the deference between local pressure derivative  and 

convective pressure derivative. In a steady flow, can the total or substantial pressure derivative of 

the flow be a non-zero value? Explain your answer with an example. 

------------------------------------------------------------------------------------------------------- 

 

11- Prove that the time-derivative operator (called total or substantial derivative) following a fluid 

particle is: d/dt =  ∂ / ∂t + ( V . ▼ ), where ▼ is the gradient operator. 

------------------------------------------------------------------------------------------------------- 

12- What do you know about the conservation equations in Fluid Mechanics? Using the differential 

analysis method, stat and discuss two of the main conservation equations of fluid mechanics. Show 

all the non-linear terms in those equations. What is the divergence of the velocity vector field?. Can 

we write the momentum equations for a Non-Newtonian fluid? How. 

-------------------------------------------------------------------------------------------------------  

13- Using the cartesian coordinates, write down and discuss the meaning of each term and show all 

the differences you know between the Navier-Stoke’s equations and the Euler’s equations. Can we 

use Euler’s equations to solve the flow in long pipes? Why? What is the relation between Euler’s 

equations and Bernolli’s equation? 

------------------------------------------------------------------------------------------------------- 

14- The flow rate is 0.25 m
3
/s into a convergent nozzle of 0.6 m height at entrance and 0.3m height 

at exit. Find the velocity, acceleration and pressure fields through the nozzle. (take the length of the 

nozzle=1.5m) 

------------------------------------------------------------------------------------------------------- 

 

15- The flow rate is 0.25 m
3
/s into a divergent nozzle of 0.3 m height at entrance and 0.6m height 

at exit. Find the velocity, acceleration and pressure fields through the nozzle. (take the length of the 

nozzle=1.5m) 

------------------------------------------------------------------------------------------------------- 

 

16- Which of the following motions are kinematically possible for incompressible flow (k and Q 

are constants): i) u = k x , v = k y, w = -2k z  ii) Vr = - Q/2Л r , Vθ = k/2Л r   iii) Vr = k cos θ  , 

Vθ = -k sin θ 

------------------------------------------------------------------------------------------------------- 

17- For a 2-D flow field in the xy-plane, the y component of the velocity is given by:  

v = y
2
 – 2x + 2y. Determine a possible x-component for a steady incompressible flow. Is it also 

valid for unsteady flow? How many possible x-components are there? Why?. 
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18- For a 2-D flow field in the xy-plane, the x component of the velocity is given by:  

u = y
2
 – 2x + 2y. Determine a possible y-component for a steady incompressible flow. Is it also 

valid for unsteady flow? How many possible x-components are there? Why?. 

------------------------------------------------------------------------------------------------------- 

 

19- Prove that the equation of continuity for 2-D incompressible flow in polar coordinates is in the 

form: ∂Vr /∂r + Vr/r + 1/r (∂Vθ/∂θ) = 0 

------------------------------------------------------------------------------------------------------- 

 

20- Explain the physical meaning and the mathematical equations for both  the divergence operator 

and the curl operator as applied on a vector field. Take the velocity field V as an example. (hint: 

prove that the divergence of V = the rate of volume expansion of fluid element per unit initial 

volume) . Prove also that for an incompressible velocity field, the divergence of V = 0. What is the 

relationship between the curle of  V and the rotation in the velocity field. 

-------------------------------------------------------------------------------------------------------  

 

21- Examine the following functions to determine if they could represent the velocity potential for 

an incompressible inviscid flow: 

a) Φ=2x+3y+4z
2
  b) Φ = x + xy + xyz  c) Φ = x

2
 + y

2
 + z

2 

------------------------------------------------------------------------------------------------------- 

 

22- The velocity potential of a steady field is given by the expression: Φ = 2xy + y, and the 

temperature is given by: T = x
2
 + 3xy + 2. Find both the local and the convective parts of the rate of 

temperature change in this field. 

------------------------------------------------------------------------------------------------------- 

 

23- Find the potential function, Φ, of a flow field such that the horizontal component of the 

velocity varies linearly along the y-axis and has the value Uo on the x-axis. What is the stream 

function, Ψ, of this field.  

------------------------------------------------------------------------------------------------------- 

  

24- Find the potential function, Φ, of a flow field such that the vertical component of the velocity 

varies linearly along the x-axis and has the value Vo on the y-axis. What is the stream function, Ψ, 

of this field.  

------------------------------------------------------------------------------------------------------- 

 

25- Velocity components of a 2-D flow are: u=k(y
2
-x

2
) & v=2kxy , find the stream function which 

has Ψ=0 at the origin. Find the potential function Φ, sketch both the Ψ and Φ lines. 

------------------------------------------------------------------------------------------------------- 

 

26- Velocity components of 2-D flow are: u=-A(y
2
-x

2
) & v=-2Axy, find the stream function which 

has Ψ=0 at the origin. Find the potential function Φ, sketch both the Ψ and Φ lines. 

------------------------------------------------------------------------------------------------------- 

 

27- The velocity potential of a 2-D flow is: Φ=kxy, Find and sketch the stream lines Ψ. 

28- The velocity potential of a 2-D flow is: Φ=y+x
2
-y

2
, Find and sketch the stream lines Ψ. 

------------------------------------------------------------------------------------------------------- 

 

29- Show that the 2-D flow: Ψ =x+2x
2
-2y

2
 is irrotational. What is the velocity potential Φ. 

------------------------------------------------------------------------------------------------------- 

30- Find the exact equation for the stream lines Ψ of a flow of water around a 90
o
 solid corner if 

the velocity at the point (0,4) = +3 m/s. sketch both the Ψ and Φ lines. 
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------------------------------------------------------------------------------------------------------------------------ 
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